
Research
How to Cite: Lepper, Markus, and Baltasar Trancón y Widemann. 2021. 
“Technical Topologies of Texts.” Digital Studies/Le champ numérique 11(1): 
1, pp. 1–98. DOI: https://doi.org/10.16995/dscn.313
Published: 13 April 2021

Peer Review:
This is a peer-reviewed article in Digital Studies/Le champ numérique, a journal published by the Open 
Library of Humanities.

Copyright:
© 2021 The Author(s). This is an open-access article distributed under the terms of the  Creative 
 Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, 
 distribution, and reproduction in any medium, provided the original author and source are credited. 
See http://creativecommons.org/licenses/by/4.0/.

Open Access:
Digital Studies/Le champ numérique is a peer-reviewed open access journal.

Digital Preservation:
The Open Library of Humanities and all its journals are digitally preserved in the CLOCKSS scholarly 
archive service.

https://doi.org/10.16995/dscn.313
http://creativecommons.org/licenses/by/4.0/


Lepper, Markus, and Baltasar Trancón y Widemann. 
2021. “Technical Topologies of Texts.” Digital 
Studies/Le champ numérique 11(1): 1, pp. 1–98. 
DOI: https://doi.org/10.16995/dscn.313

RESEARCH

Technical Topologies of Texts
Markus Lepper1 and Baltasar Trancón y Widemann2

1 Erstmittelforscher, DE
2 semantics GmbH, DE
Corresponding author: Markus Lepper (post@markuslepper.eu)

In Digital Humanities the task of “text modelling” has been recognised and 
successfully treated in the last decades. But indeed every use of digital 
text processing software, even the most naive one, is already a kind of 
text modelling activity. In many realms of daily practice this is executed 
unknowingly and without theoretic reflection, using digital text processing 
systems merely as “comfortable typewriters”. Then the structure of the 
out-coming models is determined only by the applied software. To really 
exploit the benefits of automated text processing in any realm, their use 
must change to a theory and practice of text modelling.

This requires to explore and make explicit the mathematical structure of 
the possible text models, and the restrictions imposed on them a priori by the 
involved technical tools. Those can become crucial especially. when translating 
a text between two formats – a quite frequent task with surprising pitfalls.

This article gives a systematic and exhaustive survey of the technically 
determined structural properties of text models. It lists the abstract 
requirements on modelling tools for ensuring satisfactory flexibility, and 
compares ten different commonly used text modelling frameworks.

Keywords: Text Processing; Document type; Survey on standards; 
Mathematical modelling

Les systèmes de traitement de texte numériques s’utilisent, dans la majorité 
des cas, simplement comme des « machines à écrire confortables », surtout 
dans les Humanités. Pour profiter véritablement des avantages du traitement 
de texte automatisé, surtout au niveau conceptuel, l’usage de ces systèmes 
de traitement doit changer vers une théorie et pratique de modélisation de 
texte. Pour cela, il faut explorer et rendre explicite la structure mathématique 
de modèles de texte possibles, ainsi que les restrictions imposées a priori sur 
ces systèmes par les outils techniques impliqués. Celles-là peuvent devenir 
essentielles, particulièrement lorsque l’on convertit un texte entre deux 
formats – ce qui est une tâche très fréquente avec des écueils surprenants. 
Cet article offre une étude systématique et exhaustive des caractéristiques 
structurelles de modèles de texte. Il énumère les exigences abstraites d’outils 

https://doi.org/10.16995/dscn.313
mailto:post@markuslepper.eu


Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 2 of 98

de modélisation nécessaires pour garantir une flexibilité satisfaisante et il 
compare dix différents cadres de modélisation de texte fréquemment utilisés.

Mots-clés: Traitement de texte; Type de document; Enquête sur les normes; 
Modélisation mathématique

1 Introduction
1.1 Intention of this Article
In the last three decades there has been enormous progress in philosophical reflection, 

processing methodology and technical implementation of digital text modelling. Most 

efforts take place in the realm of Digital Humanities or Digital Scholarship and shed 

new light also on older and fundamental questions about the nature of text and the 

life-cycles of documents. “We cannot help but realise the great number of domains 

that inform our understanding of the book.” (Siemens, Dobson, et al. 2011) The main 

task in these realms is to transfer historical texts and documents from a physical 

medium into the digital sphere, for the benefits of automated administration, access 

and processing. (Siemens, Dobson, et al. 2011; Pierazzo 2015)

This article starts from the opposite standpoint: Nowadays, even the most simple 

act of creating a fresh text document with some digital text-processing system is 

also always an act of “text modelling”. Due to the nature of digital technology, even 

writing a simple “SMS” is indeed the creation of a text model. In contrast to the 

process in Digital Humanities, this kind of modelling is done unknowingly and 

without theoretical reflection.

But not only medieval texts, but also contemporary products like cooking recipes, 

hiking descriptions, usage instructions, poems, novels and scientific texts (like this 

article) should benefit from automated processing (automated search, indexing, 

versioning, comparison, evaluation, translation, extraction, montage, etc.) and not 

at least from Computer-Aided Reading (CAR). This term includes all the enhanced 

or even radical new ways of exploring a text using digital technology, as browsing 

and searching, referring and indexing, annotating and highlighting, collapsing and 

expanding, scrolling and animating, etc., – see Section 4.2 below, and Siemens, 

Dobson, et al. (2011) for a detailed discussion.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 3 of 98

To minimise the necessary effort of adapting a text model to this processing 

pipeline, its nature and structure must be considered. Therefore the attitude of using 

the computer merely as a somehow more comfortable typewriter must be replaced 

by the consciousness of creating a text model, which stands at the beginning of an 

unlimited processing network. This is the first intention of this article.

For computer-based processing different text processing systems have been 

developed, by academic or commercial providers. Whenever a text is created not as the 

traditional two-dimensional visual representation on paper, but as a data object managed 

by a particular computer program, then the pre-wired ways of the program’s operation, 

its underlying data categories and their possible relations determine the structure of the 

created data object. Compared to the pencil on the paper we lose freedom, substantially! 

To clarify what price we have to pay is the second intention of this article.

Both, the naive users and the skilled specialists from Digital Humanities, often 

must fall back to the standard tools (from industry or academics) with their pitfalls 

and idiosyncrasies. These come in play esp. when trying to transfer a particular text 

from one of these formats into another. To analyse in advance the differences of the 

possible model structures and the expectable translation problems is the third main 

goal of this article.

For these goals, we analyse eight digital text formats (LaTEX, Lout, DocBook, 

TEI, HTML, OD-T, d2d_gp, XML) plus the two non-digital Manuscript and 

Typescript for comparison, see Section 1.5.

Concerning the three goals (automated processing, flexibility of modeling 

and ease of transfer) our results are mostly descriptive about the data models and 

resulting restrictions. When a particular system allows widely varying ways of usage, 

the text may become prescriptive, recommending one way of usage over the other.

1.2 Structure of this Article
The rest of this section clarifies the basic notions and principles for the further discussion.

The next section discusses global properties of the different tools, which apply to 

a text as a whole or to the general treatment of text data.

Section 3 analyses the treatment of the different text components as defined at 

the start of that section and visible in the headlines of the subsections.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 4 of 98

Section 4 treats dynamic/temporal aspects of text modelling.

Section 5 finally collects all found differences into survey tables.

1.3 Fundamental Definitions
“In most all things that exist at the intersection of several domains, domain-specific 

cultures have potential to collide, in useful ways as well as others.” (Siemens, 

Dobson, et al. 2011) This article operates on the borderlines of computer technology, 

informatics, general humanities, linguistics, philosophy, etc. To collide in a useful 

way (and not in others!-) it seems necessary to first clarify the nomenclature, because 

the central words needed in the following are used in these different domains 

with different meaning, and maybe even in some of them alone. We have to define 

“text”, “rendering”, “model/modelling”, “text modelling framework”, “substance”, 

“accidentals” and “identity”. Notabene, the following definitions shall only serve the 

following concrete discussion, – naturally we do neither intend nor expect to give 

finite answers to highly controversial questions in the various domains.

“The answer to the question what a text is depends on the context, methods 

and purpose of our investigation.” (Huitfeldt 1994, pg.235, our emphasis) In the 

following discussion, the word text is used for an intentional object in the sense of 

Husserl (Jacob 2019). Thus our “text” is nearly identical with the “document” defined 

as an “abstract object” by Renear and Wickett (2009, 2010) and to the definition used 

by Ingarden (1960) in his aesthetic analyses.

As an intentional object it is a merely mental, psycho-internal symbol which is 

completely empty: It has no properties at all except definedness and self-identity. It 

must be (explicitly) related to some outer material objects as its representations, for 

becoming communicable. Such a material object is called rendering in the following. 

It corresponds to what Huitfeldt, Vitali, and Peroni (2012) call “manifestation of 

the (same) document” and Buzzetti (2009) calls “image” (“the text does not have a 

material nature”; “’the text is only [and] always an image”) and what Pierazzo (2015) 

calls “document”. Further our “text” and “rendering” correspond to what FRBR calls 

“work” and “manifestation” (IFLA Study Group on the Functional Requirements for 

Bibliographic Records 1998). Physical objects like coloured lines on a piece of paper, 

waves of sound when hearing a lecture or bits and bytes stored in a computer system 

are different renderings of the same abstract text object.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 5 of 98

A model is a special kind of rendering, as it is structured. Its information contents 

are segregated into distinct pieces, called (model) elements. Each such element 

is assigned one particular type. Each type prescribes the possible relations of its 

instances to the instances of the same or other types.

The definition of all types and their possible relations is called a meta-model. 

Every meta-model defines an infinite set of all possible adherent models. Every 

software tool and every text format definition comes with its own and specific meta-

model. This article thus compares different meta-models.

With these definitions, the dots of ink on a sheet of paper are possibly the 

rendering of a text, but not a model. (But of course the contents of the text can 

describe a model, as in our Figure 1.)

What humans do when reading the text from such a piece of paper is creating an 

inner, mental model: Pixels of colour are translated into elements of types “headline”, 

“caption”, “footnote” and their respective relations. These types of (technical) elements 

which are well-known to the author and the elements of which are handled explicitly 

are also called text components in the following, esp. in Section 3.

The same holds with computer data: A JPEG file with a photograph of the paper 

and its dots of ink is a computer based rendering but not a model. Pierazzo (2015, 

pg.33) calls this “only digitized”, in contrast to “digitalised”. Contrarily, the computer 

based text processing programs discussed in this article work on structured data, 

means: on models. Each of them comes with its specific meta-model and is therefore 

called a text modelling framework (TMF).

The very first step when using a TMF (the transfer of a given text into this TMF, 

or the creation from scratch of a new text) already has significant impact on the 

structure of the model, because this has to adhere to the TMF’s meta-model: A 

mosaic of the Mona Lisa will appear differently when the available tessera are of 

three colours and rectangular or of 273 colours and hexagonal.

In this concern, very different software products like the (abstract) encoding 

specifications TEI/XML and the (concrete) layout processor LaTEX stand indeed on 

the very same level: They both try to catch the substance of a text into a model, 

– a first and already transforming step, independent of all further processing and 

intention. Only this step and its target meta-model are subject of this article.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 6 of 98

By the way: This notion of “model” must not be mixed up with the various ways 

for catching the contents of a text, i.e. modelling all the persons, things and facts 

mentioned in the text into a network of model elements, possibly represented as 

digital data. This is the subject of the very different variants of “Computer Assisted 

Qualitative Data Analysis Software (CAQDAS)”, creating something we could call 

“contents topology”. This is totally disjoint from the “text models” meant in this 

article, which refer to the text as such, as a mere object of language or writing. Here 

the model element types are “caption”, “headline” and “footnote”, forming a mere 

“technical topology”, as indicated in this article’s title.

Internally a postscript/PDF file is also a model. But its element types are again 

totally different, namely “fonts”, “subroutines”, “graphic contexts”, “coordinates”, etc. 

In relation to text this is only a rendering, not a model.

Being an intentional object, the relation from the inner mental symbol to an 

external rendering is always established explicitly, by an intentional act. This relation 

is personal and explicit, and whether a particular material object is related to the 

abstract text identity as its rendering is always a matter of personal opinion and taste. 

A frequent counter-example are statements like “Not, this was not the Moonlight 

Sonata, because the first movement was much too fast.”(Ingarden 1962, pg.126)

In our context, this intentional act becomes relevant when transferring a given 

model of a text from one rendering into a different meta-model: Every aspect which is 

considered substantial must be preserved, and everything considered accidental can be 

omitted, or even: must be omitted, because it is not supported in the target meta-model.

Based on this dichotomy also a notion of identity can be constructed: Two 

renderings realise “the same” text, i.e. the texts realised by them “are identical”, when 

the substantial aspects have the same value in both renderings. So the identity of a 

text is established by its substance, while substance and accidentals are both required 

for human reading and writing.

But there are no a priori or general rules to classify a particular aspect as 

substantial or as accidental. “The choice of what to include is a crucial one, and 

depends mainly on the purpose of the edition [/rendering]”. (Pierazzo 2015, pg.39)

In most cases it will be understood that the concrete optical appearance (e.g. the 

fonts and font size selected by the publisher) belongs to the accidentals, not to the 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 7 of 98

substantials of the text and does not establish a different identity, see Section 1.7 

below.

Contrarily, it is substantial that a part of a sentence is printed in an “emphasised” 

way, independently how this emphasis is realized (by bold type, underline, colour 

change or sim.) or that a sequence of words is printed “as a section title”. In modern 

terminology: The physical mark-up is translated into some semantic mark-up before 

two texts are compared for identity.

Furthermore, for many classes of texts it is agreed upon that line breaks and 

page breaks are not part of the substance. But there are classes which do respect 

line breaks, like poems and theatre plays in verses. It may be even considered of 

significance whether a poem appearing in a novel is separated by the preceding flow 

text by zero(0), one(1) or two(2) blank lines.

In the documentation texts of the different TMFs discussed in this article, those of 

TEI are the only ones which explicitly discuss the problem of text identity, substance 

and accidentals. A standard publication says e.g. “[…] one aspect of a fundamental 

encoding issue: that of selectivity. An encoding makes explicit only those textual 

features of importance to the encoder.” (Burnard and Sperberg-McQueen 2012), and 

another: “These broad definitions of textual aspects are not necessarily exhaustive 

and can be expanded and tailored to cover particular research aims and textual 

phenomena. Indeed, potentially there are infinite ways of making, describing and 

interpreting models of texts.” (TEI-Consortium 2013, sec.3.4) (In these two quotes, 

“encodings” and “models” seem to be used exchangeably.)

1.4 Analytical Tools From Mathematics and Compiler  Construction
This article tries to systematise our experiences with modern, scientific and fictional 

texts and with their automated processing, from the standpoint of compiler construction. 

This is a discipline in informatics which originally has dealt with very special texts, 

namely those written in programming languages. But it also has developed a formal 

perspective on text in general, as a necessary pre-requisite for algorithmic processing. 

So any language becomes a kind of “computer language” as soon as it is processable 

by an algorithm. As a consequence, some fundamental principles of compiler 

construction can be taken over when talking about digital text processing in general.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 8 of 98

One of the most fundamental and beneficial principles in software design is 

compositionality. This means that features or behaviours can be applied in arbitrary 

chains, where each step can get as its input the output of (a) any kind of preceding 

step, and (b) needs to know nothing about its application context.

Of course there are particular settings where compositionality cannot hold. But 

then it must be restricted explicitly, and this can be a hard criterion for the kind of 

text model. E.g., the restriction “Text in title lines may not contain footnotes.” is 

apparently true in most “plain” texts, but not when the footnotes are annotations by 

the editors in a historic-critical edition. For more details see Section 2.6 below.

Another every-day principle is the distinction between a foreground representation 

(also called external representation), which lives in one particular rendering of the 

model, versus the middleground information, which is the model in the narrow sense. 

E.g., in many computer languages an external object can be referred to from a source 

file by a qualified name, which is a chain of identifiers, joined by colons or similar 

punctuation. Alternatively, only the very last of these identifiers must be written, 

if its containing “module” has been “imported” before. Both are different front-end 

phenomena, but the information content (for further processing) is totally identical. 

Similar techniques happen in natural language texts quite frequently, but in most 

cases are not made explicit, – see Section 3.5 for important cases.

Related principles are separation of concerns (SoC) and minimality. The former 

means that fundamentally different aspects of things of one particular kind should 

not be mangled into one syntactic form, but should be modelled by one different 

syntactic element each. This allows to re-use these front-end forms to model the 

same aspect of “things of total different kinds”, and leads to minimality of different 

syntactic forms. This requirement is often violated, see Section 2.5.

1.5 Compared Text Modelling Frameworks (TMFs)
In the following sections these TMFs are compared:

• Manuscript

 Text written by hand.

• Typescript

 Text written using a typewriter.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 9 of 98

• LaTEX

 The well-known type setting system by Leslie Lamport, based on  

the TEX system by Donald Knuth. (Lamport 1986; Goossens and  

Mittelbach 2004)

• Lout

 A compiler front-end to generate postscript output, by Jeffrey H. Kingston. 

(Kingston 1992, 2000b, 2000a, 2013)

• DocBook

 An XML-based (originally SGML-based) framework for technical documen-

tation, esp. for computing technology, chief designer is Norman Walsh. 

(Walsh 2010; DocBook-Team 2014)

• TEI

 “Text Encoding Initiative”, a project for standardizing the encoding of arbi-

trary texts, but esp. in humanities. We speak about the latest version “P5”, 

which is not longer based on SGML, but on XML (Jannidis 1997; Branden, 

Terras, and Vanhoutte 2008; TEI-Consortium 2016, 2013).

• HTML

 “Hypertext Mark-Up Language” is the original document encoding of the 

world wide web, started by Tim Berners-Lee. Looking at the contempo-

rary state of the art, we mean “XHTML 1.0”, and “Cascading Style Sheets 

CSS 2.0” will be taken into account whenever relevant for structural 

features.(W3C HTML Working Group 2002; W3C HTML Working  

Group 2011)

• OD-T

 “Open Document - Text” means all parts of the Open Document OASIS 

standard which are relevant for text documents. (Durusau and Brauer 

2011)

• d2d_gp

 “Direct Document Denotation – General Purpose Module”, an front-end 

for writing down XML encoded documents with least possible formal 

noise, in the flow of creative authoring, by the authors. (Lepper, Trancón y 

 Widemann, and Wieland 2001; Trancón y Widemann and Lepper 2010)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 10 of 98

• XML

 Sometimes a feature applies to all XML-based frameworks, i.e. DocBook, 

TEI, HTML, OD-T, d2d_gp, and potentially others. (Bray, Paoli, et al. 2006; 

Boyer 2001)

Since we claim the change to “text modelling instead of type writing” as unavoidable 

and beneficiary, we do not speak about the very first solutions like roff and TEX, 

because they realise only the visual aspects. Nevertheless they are worth mentioning, 

– without the experiences they brought, none of the TMFs listed above is thinkable.

Also postscript (Adobe Systems 1999) and PDF (Geschke and Warnock 2006) 

are no primary subject of analysis in the following, because, as explained above, 

they serve as mere rendering targets and not as meta-models. Nevertheless some 

of their technical properties will become relevant when discussing particular tool 

chains.

What severely limits the values of comparisons is the fact that all these 

systems are more or less parametrisable, extendable and adaptable. E.g. LaTEX  is 

a Turing complete programming language, – every thinkable modification can be 

implemented. With others of these frameworks, the variability is more restricted, or 

maybe very hard to define formally, but always given to a certain extent.

Therefore the following comparisons are deliberately restricted to the off-the-

shelf, unmodified state. Comparing them thus gives an impression of the different 

basic philosophies, – but to realistically judge the costs necessary e.g. for translating 

between these models, the costs of adaption and parametrisation of the target 

meta-model can be significant. Nevertheless, in few cases when some particular 

parametrisation is especially easy or even required, this will be mentioned in the 

comparison results.

1.6 Substance and Identity, Revisited
Now that the collection of TMFs under consideration has been defined, this is how 

they treat the above-mentioned question for substance and identity of their text 

models:



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 11 of 98

Manuscript and Typescript have a comparable simple starting point for the 

questions of substance and identity, since there is only one physical exemplar. In 

pre-digital times, Manuscript and Typescript have been the standard format for 

authoring in the sense of “writing down”, but also for corrections, re-arrangements, 

“working on” a text. And finally for communication between author, editor, type 

setter. Sometimes these phases are multiply interspersed and thus different 

temporal layers of writing and erasing form a temporal sequence of different text 

bodies, each being derived from its temporal predecessor.

So with Manuscript and Typescript the answer to the question for identity can 

be the most simple of all TMFs, but may also turn out most complex, as discussed 

in detail in Section 4.3.

A further aspect of the “text as such”, as it shall be encoded, reproduced and 

processed, it the common practice to use abbreviations, which are “meant to be 

expanded”. So the expanded text can be considered to define the identity.

By the way: the English language orthography clearly shows the difference 

between the two cases that (a) an abbreviation is only a denotation in the external 

representation, standing for its expansion in the the model, or (b) the abbreviation 

itself, as such, is part of the text model. Eg. with XML entities, correct sentences 

are (a) “she is a &MP;”, as shorthand notation for “she is a Member of Parliament”, 

vs. “she is an MP”.

LaTEX and Lout: The text contents and the source text are two very different kinds 

of text, as with any compiler language, see above. Additionally, the generated 

Postscript output is a third kind of text on its own. Identity can be discussed on 

all these levels.

DocBook has as a ruling idea the single source philosophy: printed manuals in 

different formats, online screens, even interactive help pop-ups in applications, 

shall be derived from the one single DocBook document. From this point of view, 

this is the “real” document, ruling identity and equality, and all derived artefacts 

are “just renderings”.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 12 of 98

1.7 Exclusion of Optical Appearance
The “substance of a text model” defined in the preceding sections seems sufficient 

for all kinds of texts, scientific or fictional. But indeed it imposes a severe restriction, 

which can turn out unacceptable in other contexts: The optical appearance of the text 

is excluded from the model’s substance; the concrete graphical layout only serves as 

a means for representation, as a carrier for the meant contents; it is accidental, not 

substantial.

This is inadequate for many products of fine arts, starting with ancient stone 

engravings, designed in equal rights as text message and as graphical ornament, 

ranging over many kinds of medieval manuscripts, up to the Concrete Poetry and 

Dadaistic poems of the early twentieth century: In her standard textbook, Pierazzo 

(2015)[pg.51] quotes a “calligramme” graphic by Apollinaire. In all these examples 

the concrete graphical appearance is part of the meant substance, not only a necessity 

for transportation.

A more recent example, fitting into the discussion of digital TMFs, are the poems 

of Mauricio Rosenmann, which use the TEX typesetting system for rendering words 

and sentences according to aesthetic considerations. Font style, size and position of 

the characters being substantial part of the message (Rosenmann 1995, 1996).

This wider definition of a text model is not covered in the this article, but nearly 

all categories described in the following sections could be enhanced accordingly.

TEI is the only context where the problem of text identity, substance and ontology 

is discussed explicitly, see the quotes at the end of Section 1.3 from Burnard and 

Sperberg-McQueen (2012) and TEI-Consortium (2013, sec.3.4). So the notion of 

“identity” is (at least implicitly) recognised as being critical.

d2d_gp defines no special diff-like mechanisms beyond those for XML in general.

XML in general: A mechanical device applicable to all XML-based encodings 

(HTML, OD-T, DocBook, d2d_gp) is canonical XML, which unifies tag names, 

white space, formatting, etc., and thus makes the simple unix standard tool “diff” 

applicable. (Boyer 2001)



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 13 of 98

2 General Properties of TMFs
In this section we treat properties and strategies applied by the different TMFs to a 

text as a whole.

2.1 Multi-Layers and Multi-Authors Texts
A text often is a homogeneous object we look at simply for reading and grasping 

some contents. But this is only the simple case. Indeed, a text can be a multi-layer 

object: an original text can serve as the basis on which later altering operations have 

been performed. To represent this layering is obviously something different than to 

model only its results; the former has obviously at least one (≥1) dimension more.

So the text of a poem by Hölderlin (to take an extreme example) is for the readers 

in their rocking chair one consistent speech they want to listen to and meditate 

about. But for the philologist it is a stack of corrections, alternatives, strike-throughs 

and rub-outs, reflecting a fascinating process of word finding.

Already a simple critical edition of some text T1 of some author A is indeed an 

aggregation of two(2) very different texts, when applying the preceding definitions 

and considering authorship: First the inner text, the edited work by A forms a text. 

There is a second text T2 written by the editor(s) E (E1, E2, …), which completely fills 

the appendices. Additionally there are at least the annotation marks, interspersed 

into the main body but pointing into the appendix, which are part of T2 but physically 

rendered in the flow of T1.

T2 is a text on its own, but is only readable together with T1. So for the reader 

the two texts presented are T1 alone and T1+T2 together. T1+T2 is an achievement 

of the editors; of T2 they are also the authors.

T1 and T2 are called substantial layers, because the questions for substance and 

equality must be answered separately for both. In a similar way, different layers of 

typescript, first manual corrections, second layer of corrections, etc., form different 

substantial layers.

When the editor inserts reconstructed text into the flow text of the main body, the 

definition becomes ambiguous: The reader probably will receive it as “one particular 

version of the text T1 by A”, but with the same right it may be said that the completed 

sentence does only appear in T1+T2.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 14 of 98

In case that page break indications of some earlier reference edition are 

interspersed in the rendering of T1, then these are part of T2, not of “the substance 

of T1”.

Similar: in many cultures the print versions of laws, or of books of the Bible, 

contain “interspersed local headlines” before each single paragraphs. These shall 

serve for quick orientation and are not part of T1 but of T2. Since this is well-known, 

they can come without further mark-up.

Summarising all these aspects, it seems clear that there cannot be a general 

a priori definition of substance and accidentals of anything called “text”. Instead, 

the notion of text and its identity must always be discussed explicitly and anew for 

each modelling project. Otherwise later automated processing will yield unexpected 

results.

2.2 Meant Model vs. Written Source Text (SrcTS)
A basic property of a TMF is called Source Text Strategy (SrcTS). It means that there 

are two different substantial layers of text: first there is (A) a source text, which is a 

“physical object”, which is stored in a file system and which can be printed, read and 

edited like a program source text. The author operates on this text. A very different 

thing is (B) the intended text model, which is described/constructed by evaluating (A) 

according to the rules of the TMF. (Actually, SrcTS is a property of nearly all digital 

TMFs discussed here, except OD-T.)

Indeed, both layers of text are text formats in their own rights. The source can be 

regarded a kind of rendering on its own, namely an especially ugly one. It happens 

frequently that a reviewer’s comment about a submission to a mathematical 

conference contains a fragment like

... the case a\not\in\alpha should be discussed. ...

which uses the non-rendered LaTEX source text for communication.

In many TMFs, the difference between both text layers can vary with the 

context: source text sections which are marked as “verbatim” (or “source” or 

“screenshot”, etc.) will transfer their whitespace and newline characters from 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 15 of 98

source text into the text model and thus into the rendered output. But in text sections 

of most other kinds these characters belong to the source text only and are not part 

of the model. The same difference can be found between “physical whitespace” in the 

source, and that which is wrapped in a <text:s> element in OD-T a kind of “non-

ignorable whitespace”, (Durusau and Brauer 2011, sec.6.1.3) or in a <xslt:text> 

element in XSL-T.

The mere existence of a source text does not help when searching for the real 

substance of a text. This can only be found in the mathematical model, not in the 

concrete front-end grammar of the input language. Here again the fundamental 

difference between foreground-representation and middleground model rules, as 

mentioned above. Some framework languages are even Turing complete, i.e. full-

fledged programming languages, and there is no way of calculating the equality of 

two sources (=the identity of the encoded models) without their complete evaluation.

But frequent practice does help to narrow down substance considerably, as 

the source is often stored in two disjoint sets of text files. One contains the “style 

sheet” sources, which are provided by the publisher and thus accidental. The other 

contains the “contribution”. All definitions therein are more likely to be substantial. 

(This practice is ruled by the principles of SoC and reusability, see Section 2.5.) Any 

re-definitions in the latter of rendering rules from the former are also candidates for 

substance. These considerations apply to SrcTS TMFs, i.e. compiler style text models.

A further step of formalisation perform the TMFs with an XML encoded source 

text. These are DocBook, TEI, HTML and d2d_gp. This allows to apply standard tools 

and fine granular access control, see e.g. Section 4.4 below. (OD-T has also an XML 

based representation, which is normally not edited directly, but which can also serve 

as starting point for automated processing.)

An important consequence of SrcTS, that all kinds of meta-information (like 

“Fixmes”, “todo lists”, comments on open issues and possible variants, notes about 

the calendric dates of changes and updates) can be reified and managed in the same 

document as the definition of the intended text model, namely as source language 

level comments. This can be esp. useful for multiple authors’ co-operation, and has 

the additional effect that automated retrieval by version control systems, automated 



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 16 of 98

comparing, searching and replacing (diff, grep, sed, etc.) apply to these meta-

info seamlessly in the same way as to the text model itself.

LaTEX, Lout, DocBook, HTML, d2d_gp and generally all XML based TMFs follow 

the source text strategy and thus can make use of comments in the source text.

(The same holds indeed for postscript, but since this is only qualified as a back-

end, these comments cannot be used by authors. Indeed, many software which 

generates postscript does insert comments to document their operation, or even 

for further processing.)

OD-T also has an XML based output format, but this is not useful for manual 

writing (authoring), only as a program back-end.

2.3 Source Model Coupling (SrcMC)
In meta-models which are based on SrcTS, most definitions of the semantics of input 

structures follow the principle of source model coupling (SrcMC). This means that the 

sequential order of the sub-expressions in a compound expression in the source text 

directly specifies the sequential order of the sub-elements in the model.

This is trivial and understood for the words in a sentence, the sentences is a 

paragraph, etc. But it is not always convenient for cells of a table (see Section 3.3.2), 

for footnote text (see Section 3.7), for defining index positions (see Section 3.5), etc.

For example, LaTEX supports two flavours for footnotes: mostly the complete 

source text of a footnote is written “in place” after that portion of main text which 

shall be decorated with the footnote mark. So source text and model are coupled 

(= footnote-SrcMC).

A long footnote text in the middle of a sentence lowers the readability of the 

source text, so LaTEX allows as an alterative to write two(2) separate expressions in 

the source: a short position indication in place, in the middle of the sentence, and 

the footnote text separately, some lines later. The meanings are exactly the same with 

both methods. So again the source text does not help to decide the equality of the 

intended model substance.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 17 of 98

2.4 Compound Source Strategy (CmpSS)
Supporting the Compound Source Strategy (CmpSS) means that one single source file 

can contain segments of very different text description languages: each of these will 

be translated by different dedicated compilers, and the results will be combined to 

make up the final document rendering.

The advantage of the compound source strategy is, that all information is kept 

in one single source file (or a sequence of source files, organised according to the 

user’s need), without fragmentations due to mere technical necessities. This kind of 

integrity can also be aimed in conventional settings, with different files, by collecting 

them in one single disk directory, or one single zip archive, etc. But then still losses 

of single physical files may happen, or some confusion of file versions, and the 

integrity of the “text as such” will be lost.

(By the way: CmpSS can be seen as a successor of the ancient “object linking 

and embedding (OLE)” technology by microsoft. The fundamental difference is 

that there binary objects have been linked, and only dedicated computer software 

could perform the embedding and processing, while our notion of CmpSS means 

concatenating human readable source texts.)

A second advantage is, that all search, replace and spell check operations are 

applied on the whole text model, seamlessly and consistently, when applied to the 

one single source file. For instance, the replacement of one name by another will 

happen in figures, song lyrics, graphics and in the main text consistently.

Manuscript and Typescript follow CmpSS in so far as graphics, charts, etc., 

drawn by hand or by type writer can be integrated in any document.

LaTEX supports CmpSS when “pgf” or “pstricks” or other graphic compiler 

packages are used (Tantau 2015). Similar with “musixtex”: replace operations 

by an editing program on the source text will affect the normal flow text and e.g. 

song lyrics in the same way and synchronously. The same holds for bar numbers, 

etc. (Taupin, Mitchell, and Egler 2002)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 18 of 98

Lout follows CmpSS for graphics in general, and some specially supported kinds of 

diagrams (graphs, charts, syntax diagrams, pie graphs). (Kingston 2013, pg.165pp)

DocBook does support CmpSS only so far as “screen shots”, “program sources” 

and mathematical formulas are supported. All other “media objects” are defined 

externally and embedded in an opaque way. (Walsh 2010, sec.3.6.8).

TEI comes with its own document type definition language “ODD” (TEI-Consortium 

2016). This allows to integrate third-party elements, so basically CmpSS can be 

realized according to the needs of a particular encoding project.

HTML follows CmpSS as there are combined formats of “HTML+SVG” or 

“HTML+MathML”, which allow graphics and mathematics formulas to be 

included. (But severe technical problems arise, since these combinations are not 

covered by standard DTDs.)(W3C 2002)

OD-T in principle aims at CmpSS since a file declared to be an <office:text> 

document may contain also element types from the graphics, the charts, the 

spreadsheet world. But it seems that this transparency has not been realised 

completely, but put under rather idiosyncratic limits. (Durusau and Brauer 2011, 

sec.3.5-3.8)

d2d_gp supports CmpSS as first class resident: the #embed operator is foreseen 

to escape to arbitrary text based compilers, and currently extensively used for the 

inclusion of LilyPond source texts (Lepper 2015).

(E.g. the sources of an SVG text or an xfig object are pure text, thus can be 

embedded into d2d_gp. A future d2d-aware editor should extract these fragments 

automatically, start an external editing application, and finally re-embed the 

result.)

XML in general has as one of its fundamental design goals the free combinations 

of different formalisms. Therefore it is a natural basis for CmpSS.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 19 of 98

2.5 Separation of Concerns (SoC), Minimality, Reusability
A pre-requisite for reusability of styles, layout methods and structure definitions is 

separation of concerns (SoC). (It is also a pre-requisite for compositionality, because 

for re-combining aspects you first have to separate them !-)

SoC means that different aspects of the text model and its renderings are realised 

by different data structures, notated in different parts of the source text, or even in 

different disk files.

Most TMFs support this strategy. Nevertheless, many implementations of tools 

and applications counteract the intended effect. E.g., OD-T separates the rendering 

information for segments of character data from their contents, and allows one 

“rendering style” to be applied to a multitude of text segments by named references. 

The number of styles should be minimised and styles should be re-used in a sensible 

way using the inheritance mechanism provided. But the wide-spread open source 

implementation “libreOffice” (3.5:build-413) applied to such a sensibly designed text 

model, does expand these definitions before writing them out and thus creates a new 

style object for each single character segment. This turns the feature of separate, re-used 

and named style definitions from a means for clarification into a means of confusion.

A special instance of SoC is the separation of semantic mark-up and optical 

appearance. As follows from our basic definitions of text, see Section 1.3 above, this 

is indispensable.

Manuscript and Typescript: (n.a.)

LaTEX has been developed as a consequence of the SoC principle: it is a collection 

of TEX programs which encapsulate requirements for particular standard text 

formats (i.e. TEX applications) into so-called class files. The realisation of these 

formats is full-fledged, Turing complete code, which finally calls TEXs original type 

setting API for producing output (Lamport 1986).

In a next step, the user can tailor those formats again by further macro coding. 

These can be collected into further modules, realised as module include files, or 

even as “class files” on their own.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 20 of 98

Lout follows basically the same architecture als LaTEX, with different names for 

modules and code files.

DocBook has a monolithic architecture, tailored to the specific needs of technical 

documentation, esp. computer software. Adaption of its definitions, thus re-use, 

is explicitly disencouraged (Walsh 2010, sec.5).

SoC is e.g. violated by defining <mediaobject> and <inlinemediaobject> 

as two different element types with nearly identical structure. This practice is 

notorious. Another negative example is <info>, which is a common wrapper 

for very different, unrelated kinds of meta information (sec.3.5), and the three 

distinct element definitions for paragraphs. (sec.3.6.6)

In TEI, SoC as a first class principle induces the highly modular structure of its 

document type definitions.

HTML supports the separation of semantic mark-up and rendering, i.e. optical 

appearance. A @class attribute may be applied to the text body’s elements, 

according to semantic roles, and these classes linked to final physical rendering 

parameters by some CSS text in dedicated, reusable files.

Furthermore, dynamic behaviour realised by ECMA script code can be (and 

normally is) put into separate files for SoC and reusability.

OD-T aims at SoC by separating several kinds of “style definitions” (which are 

basically rendering parameters) from the real text model object. But the design 

and its documentation are more confusing than clear, and seem heavily redundant, 

thus missing SoC (Durusau and Brauer 2011, sec.3.15, sec.16).

d2d_gp tries to realise compositionality, SoC and re-use as far as possible. It is the 

only TMF which employs the versatile technique of parametrisation by rewriting, 

which allows to change any detail when instantiating modules and adopting 

them to different application contexts (Lepper and Trancón y Widemann 2018).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 21 of 98

It makes any existing packages parameterisable in an utmost flexible way, by a 

simple input language very close to the user’s intuition. Contrarily, the necessary 

fix point algorithm needed for evaluation turned out as rather complex, what 

seems the reason that this approach has not been used before.

XML in general has as one of its fundamental design goals the free combinations 

of different formalisms. Therefore it is a natural basis for SoC.

2.6 Compositionality
As mentioned in the beginning (see Section 1.4) compositionality is one of the most 

beneficent principles in software design. It basically means two properties, or one 

property seen from two sides, namely (a) to allow the free combination of all types 

of components, as described so far, and (b) to treat each component according to 

its type in a uniform way, independent of its enclosing context. Compositional 

behaviour should always be the default case: the human user as well as the author of 

the program code do profit heavily.

Contrarily, a particular TMF may impose explicit restrictions on compositionality. 

Some of them are sensible, commonly accepted and beneficent, e.g. in favour of 

the user’s orientation: Many TMFs have a structure like “paragraph”, which cannot 

directly be used recursively (a paragraph cannot contain paragraphs), but indirectly 

(a paragraph can contain tables, which again can contain paragraphs). So the user can 

make their mental model always as a “simple one-dimensional chain of paragraphs”, 

with complicated structure above and below. More restrictions are wide-spread, e.g. 

footnote text cannot contain footnote marks. All these restrictions must be made 

explicit, when discussing the text structure, and must be sensible w.r.t. the goals of 

modelling.

In many TMFs there is a quite different group of restrictions which come only 

from technical implementation problems, or from bad design of the standard, and 

are not related to the modelling problem as such. In most such cases other design 

goals like separation of concerns and minimality are also violated.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 22 of 98

Without restrictions on compositionality, lists can contain lists and tables and 

paragraphs; tables can contain lists and tables and paragraphs; paragraphs, whether 

in lists or tables or both or neither, can contain annotation marks; annotation text 

can contain tables and lists and lists of tables, etc.

So far no problem should arise, only some questions. E.g., where is the footnote 

text placed if the footnote label is in a table entry? At the bottom of the table or the 

bottom of the page? And what about annotations in a float caption?

A systematic solution is to assign to each annotation kind two lists of component 

types and kinds, the innermost component from the first (/second) list which 

contains the annotation mark defines the reset scope (/rendering position).

In most cases a title text needs to contain entity references and formulas, 

sometimes also highlightings. But does it need citation keys? Or footnote marks? 

And how will conflicts of the clashing rendering rules will be resolved?

In most cases title text will explicitly exclude two dimensional components like 

lists, tables and diagrams. But possibly float captions may have richer contents than 

section titles have.

In most cases annotation text (e.g. footnote text) may contain everything like 

a normal main text paragraph. But annotation marks are limited, as discussed in 

Section 3.7.

W.r.t. entity references and annotation marks a new aspect comes into play, 

namely the multiple rendering of one source text segment (what can be called 

multiplication of source text): A section title or float caption text appears in the 

rendered text document in the component it belongs to (the section title paragraph, 

etc.), and additionally in a central index, (“ToC” or “List of Figures”). Anchors, citations, 

entity references may only be “operative” (rendered as a link target or added to a 

register) in the first case, not in the second.

In any case, the adequate means for a mathematical model of these restrictions 

are restrictions on the transitive closure of the containment relation. Please note that 

this is a rather high-level device, even pure relational algebra does not suffice. It 

must be formulated additionally to the grammar rules of “content models”; most 

attempts to integrate it therein are highly impractical and hardly maintainable. 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 23 of 98

E.g. the original SGML design has a mechanism for forbidding particular (direct or 

indirect) nestings. Obviously due to lack of practicability this has been dropped in 

the definition of XML.

In Manuscript and Typescript, authors are a priori totally free to arrange the 

text as they like, without restriction on compositionality. This can lead to a multi-

layered and even ambiguous text structure, which complicates the transfer into 

digital meta-models (and thus automated processing) substantially.

LaTEX and its basis TEX have been explicitly designed for compositionality. Due 

to the functional flavour of the language, there are no fundamental limits for 

nesting: footnote text may contain footnotes, lists, tables and paragraphs may 

appear in any order, etc.

Nevertheless, there are severe limits. Partly by intention: floats may not contain 

floats nor chapters, sections only subsections, not subsubsections, etc.

Others limitations are mere technically induced, mostly by the use of global 

variables. E.g. all structural levels are realised by the names of variables, which 

makes context-independent programming tedious and inefficient.

Nevertheless it is amazing that most classes and packages of the LaTEX world 

can be combined and plugged together, – in thirty years of experience, using 

packages from very different realms, we encountered two or three name clashes 

and two or three fundamental incompatibilities!

Lout is, w.r.t. compositionality, again similar to LaTEX.

DocBook partly aims at compositionality. The elements with explicit nesting 

level <sect1>, <sect2> … behave non-compositional, as in other TMFs. 

But there is a compositional element <section> as an alternative. Top-level 

structure elements are not compositional (same in other TMFs). (Walsh 2010, 

sec.3.4). But in most of its definitions, compositionality and SoC are completely 

negated.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 24 of 98

TEI basically supports compositionality by its module mechanism. But since all 

changes in imported modules must be defined pointwise and separate, integration 

of user defined modules may turn out to be tedious. A bad example for missing 

compositionality and confusing documentation can be found in a major text of 

the TEI-Consortium (2016, sect.16.3/pg.536):

“In other cases, […] the <p> element may be used to tag the paragraphs, and the 

<seg> element used to subdivide them. The <ab> element is provided as an 

alternative to the <p> element; it may not be used within paragraphs. The <seg> 

element, by contrast, may appear only within and not between paragraphs (or 

anonymous block elements). “

HTML basically aims at compositionality. Even hierarchical levels of chapters and 

sections do really mean only the optical rendering of their headlines and are in 

no way restricted (see Section 3.1). But some decisions are hard to accept, and 

the work-arounds hard to understand: lists “<ol>” cannot be contained directly 

in paragraphs “<p>”, but wrapping them in a “<button>” or “<ins>” works!? 

(Trancón y Widemann and Lepper 2019)

OD-T The basic treatment of “style definitions” seems compositional, since the 

combination rules allow to resolve any conflict. (Durusau and Brauer 2011, 

sec.3.15, 16) The conflict resolution rules are sketched out in natural language, 

which is rather confusing. (sec.16.3)

The text body components have very similar restrictions on compositionality as 

known from the oldest predecessors (e.g. paragraphs cannot contain paragraphs, 

but tables can contain tables, etc.)

d2d_gp: (see remark on SoC above)

XML in general has as one of its fundamental design goals the free combinations 

of different formalisms. Therefore it is a natural basis for compositionality.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 25 of 98

2.7 Tree Structure and Free and Bound Segments
Historically starting with SGML, all technical text meta-models listed in the previous 

section and treated in this article, except manuscript and typescript, are based on a 

structure with the mathematical definition of a tree-shaped graph with directed and 

ordered vertices. In most implementations this graph is technically reified as a so-called 

Document Object Model (DOM). The nodes of that graph are either so-called elements 

or character data nodes. A text is modelled as one(1) top element; each element has 

an ordered final sequence of child nodes and a set of string values, indexed by string 

values, as its attributes. The element graph is free of cycles. Nowadays this structure 

is omnipresent in XML encoded text objects. But since this is a natural encoding 

of expressions (in the mathematical sense), also other formats like LaTEX and Lout 

basically adhere to a tree structure.

Of course this tree form appears a natural and direct solution for many aspects 

of text, e.g. the hierarchical structure of an article with chapters, sections, appendices 

on top, paragraphs below, and words, whitespace, symbols and icons as leaf nodes.

But indeed the tree form is not an adequate model for text as such, not for all of 

its aspects. E.g., many of the TMFs can model a selected text segment (=a contiguous 

sequence of characters, subject of a recent text change or of an annotation) only by 

wrapping it into one(1) element, i.e. making it the contents of one(1) node of the tree 

structure, see the dedicated elements of type <sc> = “select contents” in the lower 

part of Figure 1. This is called tree-bound (text) segment in the following.

But many practical use cases are not covered by this structure: the manuscript 

TMF has no problem to highlight arbitrary text segments with a text marker, starting 

in the midst of one paragraph and covering also parts of its follower. 

In a tree like base structure, this can be modelled only by two(2) elements, one 

representing the start and the other the end of the text segment. These two elements 

have themselves empty content and are related to each other by some identifier value, 

see the empty elements <ss/> = “start segment” and <es/> = “end segment” in the 

lower part of Figure 1. This pair is called a tree-free (text) segment in the following. (The 

most important application of this principle will be discussed below in Section 3.4.)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 26 of 98

These tree-free segments by elements can be positioned independently from the 

tree structure; nevertheless their element types must be foreseen explicitly in the 

document type definition of each element type they shall be contained in. One main 

technical disadvantage is that their correct pairing is not implied by the syntactic 

document type, as it is with tree-bound text segments, but is a semantic property, 

requiring explicit validation.

Even more important is that tree-free segments are not only independent from 

the tree structure, but also from each other: they need not be nested properly but 

can overlap arbitrarily, like different text marker applications in a manuscript. (“For 

many encoding projects, [...] the problem of overlapping hierarchies is a serious 

drawback” says Pierazzo (2015, pg.120).)

Only TEI dedicates a whole chapter of its specification to the problem of tree-free 

structures (TEI-Consortium 2016, sec.20).

3 Text Models and Their Components, As Realised in 
 Different TMFs
As mentioned above, the element types of text models which are well-known to 

the users and treated by them explicitly are called “component (types)”. Informally 

collecting component types based on manifold practical experiences with different 

TFMs brings up a list like “paragraph”, “section”, “title”, “table-of-contents”, “footnote”, 

<section>

<p> <p> <p>

CDATA
<ss id="i"/>

CDATA CDATA CDATA
<es id="i"/>

CDATA

<section>

<p> <p> <p>

CDATA

<sc>

CDATA

<sc>

CDATA CDATA

<sc>

CDATA

Figure 1: Tree-Free and Tree-Bound Modelling Of the Same Character Segment.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 27 of 98

“table”, “list”, etc. These can be seen in the titles of the following subsections, which 

discuss the component types, their possible mutual relations and their general 

properties in the TMFs. We try to separate the different component types cleanly, but 

in some cases overlaps and blurred borders are unavoidable,

When the instances of a component type come in different flavours or variants, 

these are called kinds while the collection of types discussed in this article is fixed, the 

kinds can vary, even with each document. For each component type the appropriate 

mathematical devices are identified for a further, more detailed modelling, which is 

omitted in this introductory paper. Whenever no easily applicable exact mathematical 

method can be found for an empirically given technical text format (meta-model), 

this indicates a design flaw.

3.1 Explicit Hierarchical Structure and Sections
For the purpose of the next subsections, a text can be seen as a flow of characters 

and mark-up, both abstracted from their concrete appearances (Huitfeldt 1994). Line 

breaks, page breaks and extra vertical space are possibly included in the mark-up, 

and additional vertical separators (“asterism”, “volute”) can be modelled as special 

characters or as mark-up.

When reading a traditional paper rendering in textual order, a two-stage parsing 

process is executed by the perceiving human mind: first the mark-up separates the 

text into physical paragraphs. These are sequences of contiguous characters (plus 

maybe mark-up), separated by changes of appearance, line breaks or/and vertical 

distances.

In a second step, some of these physical paragraphs are identified as section title 

paragraphs, each of a particular section title kind. This can be caused by mark-up, 

or by the character data containing some key words, or by a combination of both. 

All text following this section title is perceived as a section. Translated literally from 

Latin, this means that such a title “cuts” the text into parts. The section title kind is 

transferred to the section as its section kind. The constructed mental model implies 

that such a section “contains” all the following text up to the next section title of 

the same kind, which ends this section and starts the next. So the text is regarded a 

sequence of sections.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 28 of 98

A most simple section parsing process (MSSPP) provisionally describes the 

operation of a reader’s mind when constructing the mental model of the text when 

consuming it in textual order. MSSPP supports nested application of this mechanisms 

and works as follows, in the way of LL(1) parsing:

All recognised section kinds are stored on a mental LIFO stack (= a “Last In 

First Out” storage). As soon as a section title is reached with the same kind as one 

already somewhere on the stack, all sections up to and including this stack level are 

regarded closed and the stack is shortened accordingly. Then the new section kind is 

pushed on the stack and the sectioning process applied recursively. Thus an explicit 

hierarchical structure is layed over the text body; each section title and its section 

appear on a particular level of this hierarchy. The result is a mental model of the text 

as an hierarchically organised tree structure.

Possibly the section text contains physical paragraphs between the section 

title and the title of the first subsection. These we call pre-paragraphs. Due to the 

traditional reading (=”parsing”) process, there cannot be any “post-paragraphs” 

following the last subsection, because only the beginnings, not the endings of these 

are visibly rendered.

Additionally this hierarchical structure can be made more explicit:

(a)  There can be a naming scheme which assigns a word like “Part”, “Chap-

ter”, “Section”, “Paragraph” as a kind name of a section kind, and which 

will be used when referring to some text position, see Section 3.9.

(b)  There can be a numbering scheme. This assigns an individual sequence 

number to all subsections of a particular section. The concatenation of 

the sequence numbers of all containing sections, in top-down order, 

yields a numeric coordinate for each section.

The older fashion is to use different number systems for different section kinds, 

yielding coordinates like “A I 1 a α”; the modern approach is just to use decimal 

numbers, yielding “1.1.1.1.1”. Both have their merits.

(The fact that this nesting of sections and subsections obviously, even necessarily 

forms a tree-shaped graph misled the inventors of SGML/XML et alii, to model all 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 29 of 98

levels of a text as a tree, which is of course in no way adequate and causes severe 

problems nowadays when trying to specify and implement sensible processing 

algorithms !-)

The section title paragraph contains a title text, which serves as a name and/or as 

a description of the section’s contents. The title text may be the empty string.

Typically, in the text contents of the title paragraph, the kind name and the 

section’s sequence number or the complete numeric coordinate may precede the 

title, together with some constant decoration or separation stuff. In case of an empty 

title text, one of these must appear. Different combinations are possible, like “1.1.1.1 

Introduction” or “Subsection 1: Introduction” or “1 – Introduction”.

Normally these rendering rules are constant throughout the whole text for one 

particular section kind/section title kind.

A common practice is that the sequence number (or the complete coordinate) 

appears only for all sections higher than a particular hierarchical level.

(Again, substantiality is critical, and basically three strategies are applicable: 

(a) The fundamental rules for the rendering of the section kinds are substantial 

and encoded, and only the title text (as the only varying data) is encoded explicitly 

with each section; (b) additionally the number is made explicit, but only as an 

abstract mathematical value, its rendering is defined by the data from (a); (c) the 

complete concrete contents of each title paragraph is considered substantial and 

is encoded.)

The following text is an example for the parsing of a three level sectioning with 

minimal means, namely line feeds as only mark-up, just to constitute the physical 

paragraphs, and explicit numbering and naming for identifying the paragraph kind 

and section title kind:

Chapter 1

1:

First Letter

Dear Friend!

Here in Transsylvania ...



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 30 of 98

Normally the sequence numbers of sections of all kinds are positive, start with 

one(1) and grow upward by one(1). But this may be different for every section 

kind individually: While counting down or jumping non-monotonously is quite 

uncommon, a zero-based counting scheme may be sensible. Furthermore, when 

modeling legacy texts, some sections may have been lost and gaps in the numbering 

are substantial.

Normally the counter for all sections of kind sK is reset when the immediately 

containing section is closed. But it is also possible to bind this reset to the closing of 

a particular kind sR somewhere higher in the hierarchy, or to suppress it completely. 

This we call numbering reset scope. (E.g. it is common that “Chapters” are not reset 

when a new “Part” starts.)

In most texts the intended explicit hierarchy adheres to some of the following 

properties:

 eh-1. No section contains directly sections of its own kind.

 eh-2.  All sections of a particular kind sk1 contain directly only sections of some 

(n ≥ 0) particular kinds sk2, sk3, …, a proper subset of all section kinds.

 eh-3.  All sections of a particular kind sk1 contain directly maximally sections 

of maximally one (n ∈ {0,1}) particular kind sk2.

 eh-4.  All sections of a particular kind sk2 are contained directly only in sec-

tions of one particular kind sk1.

 eh-5. All sections of kind sk1 contain directly at least one section of kind sk2.

 eh-6.  All sections of kind sk1 contain directly zero(0) or the same number n ≠ 

0 of sections of kind sk2.

 eh-7.  When a section of kind skX contains directly or indirectly a section of 

kind skY, then no section of kind skY contains directly or indirectly one 

of kind skX.

   (MSSPP violates this for an input sequence of title kinds like T1–T2–T3–

T1–T3–T2.)

 eh-8.  Either none or all sections of a particular kind sk1 contain pre-paragraphs.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 31 of 98

 eh-9. Either none or all sections with subsections contain pre-paragraphs.

All texts fulfil property eh-1, by definition.

Algorithm MSSPP ensures eh-1. But it is too restricted: every individual section 

can contain only sections of one particular kind. Each section title kind starts either 

a “sibling” or an “aunt” of the current section, if it is already contained somewhere 

in the current state of the stack. Otherwise it starts a “child” on a further stacking 

level. The case that a new section title starts a “sibling” with a different kind can 

only be recognised by additional and explicit rules, mentioning particular title 

kinds.

Most contemporary scientific papers fulfil eh-3 and eh-4 for all section kinds, 

by intention. This implies eh-1, eh-2 and eh-7 for all section kinds and establishes a 

one-to-one map between section kinds and levels of hierarchy. The structure of the 

hierarchy may vary only by partly omitting the lower levels. Fulfilling additionally 

eh-8 is often estimated good style.

Adding eh-5 for all kinds but that on the leaf position makes that the hierarchy 

has the same depth at every leaf. This is a property often emerging by chance.

The combination of eh-3 and eh-4 may be weakened by the possibility to “cut 

out” one particular level in the middle of the hierarchy. This technique can be found 

together with the heterogeneous number coordinates in older books, e.g. that Part 

A consists directly of chapters A.1, A.2, but part B has an intermediate grouping level 

B.i.1, B.i.2, …, B.ii.1, B.ii.2, etc. For this, MSSPP suffices.

Adding eh-6 to eh-3 and eh-4 yields the (in-)famous dialectical structure of 

Hegel’s “Enzyklopädie der philosophischen Wissenschaften”.

Many contemporary scientific text books fulfil eh-3 and eh-4 for all section 

kinds, with one very specific and limited exception, namely that each section of kind 

“Chapter” begins e.g. with a section of kind “Survey” and ends with a section of kind 

“Exercises”, both not included in the numbering scheme which covers the “normal” 

subsections in between. So eh-3 is replaced by eh-2 for kind “Chapter”, and enhanced 

by eh-5 and eh-6 w.r.t. “Chapter” vs. “Survey” or “Exercises”. (This is a phenomenon 



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 32 of 98

of heterogeneity, similar to the existence of pre-paragraphs, and could be modelled 

more adequate by a grammar based approach, like the implicit hierarchies discussed 

in Section 3.2.)

Usually, the explicit hierarchical structure is represented in a Table of Contents 

(ToC). This is a formatted piece of text in which every section of a particular range of 

hierarchy levels is represented by one or more text lines. Like in the title paragraph, 

different aspects of each sections can appear in different forms: 

(a)  the numbering, either (a1) only the sequence number or (a2) the com-

plete coordinate;

(b)  the section kind, either (b1) explicitly by the kind name, or (b2) implic-

itly by optical appearance, or (b3) by both;

(c) the title text;

(d)  some navigation means to the start of the section’s rendering, mostly 

a page number.

The selection and way of presentation of these pieces of informations can be defined 

individually for every section kind. In any case, the hierarchical structure must always 

be visible, at least by some mark-up like font size, indentation or leader lines.

(It is again subject to definition whether all these arrangements are substantial 

or accidental, as discussed in Section 1.3.)

Instead of the title text, each section may be assigned a ToCTitle to appear in the 

ToC, and additionally a running title to be printed in the page header or footer in 

some paper rendering. These alternatives are sometimes required for optical reasons, 

when the title text is too long.

There may be more than one Table Of Contents, e.g. (a) one survey omitting 

lower levels of the hierarchy, (b) one overall and detailed, (c) one for each part, placed 

at its beginning, (d) one for all appendices, before the first, etc. Each of these tables 

shows a different subset of sections, filtered by horizontal and/or vertical position.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 33 of 98

Manuscript and typescript first require linefeeds to constitute a physical 

paragraph, and then mark-up (underlining or upper case only, etc.) and/or special 

text contents (leading numbers and keywords) for clarifying that the paragraph is 

a section title of some particular kind.

ToCs must be constructed explicitly, thus are error-prone.

LaTEX comes with a predefined fixed hierarchy of section kinds, per “document 

class” (Lamport 1986). The numbering is one-based, contiguously increasing 

and rendered as decimal numbers. Numbering is printed for all sections above a 

particular level, defined by the counter secnumdepth.

Arbitrary jumps in the numbering can be achieved by manipulating the 

corresponding counters manually. One alternative short title can be supplied, for 

use by both, ToC and as running title in page headings.

The ToC lists all sections above paragraph level, with title text, numeric coordinate 

and page number. For higher level sections the kind name is printed before the 

number, as in “Chapter 12”, but only in the section title, not in the ToC. The 

wording respects the main human language of the document.

When only the predefined section types are used, properties eh-3 and eh-4 are 

fulfilled for all these, implying eh-1, eh-2 and eh-7. But additional section types 

may be defined by deriving from a generic “section*”, “subsection*”, etc. 

environment, which starts a section not interfering with the numbering scheme of 

the standard sections. This breaks eh-1 and eh-3, but still ensures eh-4 and eh-7.

(As mentioned above, LaTEX is a Turing complete language and the appearance of 

everything can be tailored according to the user’s needs. So the description above 

is only about the off-the-shelf standard settings. The same holds for Lout, HTML, 

d2d_gp, etc.)

Lout: The additional “Document Layout Package” provides chapters, sections, 

automated generation of ToC and page headers, etc. but no free recursion into 

arbitrary deep nesting, because “the author considers sub-subsections to be 

poor style”. (Kingston 2000a, end of 4.4) Using these library package, a ToC is 

constructed automatically, employing an auxiliary data base.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 34 of 98

DocBook has a predefined fixed hierarchy of section kinds, ensuring properties 

eh-3 and eh-4, implying eh-1, eh-2, eh-7. (Walsh 2010, sec.3.4).

Numbering of sections is always implicit and cannot be specified in the document. 

A ToC can be included explicitly, but this is not recommended: it should be 

generated automatically by the presentation/rendering process. (sec.9).

TEI models sections explicitly, by proper nesting of <div1>, <div2>, … or of 

<div> elements. The numbering can be given explicitly as attribute value @n 

(TEI-Consortium 2016, sec.4.1.2). The nesting level is implicitly defined by tag 

nesting. The section kind can be freely given as @type, and no rules apply, only 

recommendations, so none of the properties listed above is ensured.

Initial contents of a section can be a <head> element, which specifies the title 

text, or a sequence of more than one of these, each with a different @type. TEI 

and HTML are the only frameworks which allow more than two (>2) title texts for 

the same section.

HTML does not model sections but only the title paragraphs. Recommended 

usage is <H1> elements for the toplevel section titles, <H2> for the titles of the 

next lower level sections, etc.

There is no restriction on titles; different values of @xml:lang or @class 

make sequences of more than one title element sensible. TEI and HTML are the 

only frameworks which allow more than two (>2) title texts for the same section. 

There are no notions of ToC, kind name or numbering scheme. (But the latter is 

modelled explicitly in CSS 2.0.)

OD-T also models title paragraphs not sections. The standard explicitly defines 

sections to extend from one title paragraph “to the next heading at the same or 

higher level” (Durusau and Brauer 2011, sec.5.1.2). This seems similar to MSSPP. 

But indeed it is quite different, because here “level” and “kind” (taking @style 

as such), are both explicit. So different kinds can appear on the same nesting level 

(=as siblings) without problems, and same kinds as parent and child. Indeed, none 

of the properties from above is guaranteed.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 35 of 98

OD-T foresees different kinds of indexes. These include a generic one for user 

extensions, and a particular ToC kind. Into this section titles are collected 

automatically, combined with explicit entries by the user. (sec.8)

d2d_gp realises sections by nesting of <h1>, <h2>, … or of <Hrec> elements, 

similar to TEI. ToC construction is implicit, Two(2) alternative short titles are 

supported, to appear in references and in the ToC.

Numbering is implicit and appears only in a back-end format. In the current 

default rendering rules, number formats are fixed to decimal. There may be one 

single appendix, the Chapters contained therein are numbered with uppercase 

alphabetic characters. Section kinds are implicit, i.e. given by the nesting level, 

trivially ensuring properties eh-3 and eh-4, implying eh-1, eh-2, eh-7.

3.2 Implicit Structure and Paragraphs
The physical paragraphs which are not title paragraphs make up the “contents” 

of the sections. They are simply called paragraphs in the following. A sequence of 

paragraphs is either the only contents of a section at leaf position, or forms the pre-

paragraphs preceding its first subsection.

Each paragraph has a (paragraph) kind, which is recognisable by mark-up or by 

some leading character data or by both. Many texts will only have one single kind 

of paragraphs, the contents of which is flow text, making up the contents of the 

section. Frequently found other kinds of paragraphs are: Motto, Quotation, Survey, 

Comprehension, Deviation, Source Code Example, Screenshot, Music Notation.

There is a further level of hierarchy below paragraph, namely line display of 

embedded mathematical/chemical formulas, or embedded music notation, etc., 

framed by line breaks. Sometimes such a combination is not clearly distinguishable 

from a sequence of separate paragraphs. But it is clearly no such sequence when the 

line display is part of a sentence, e.g. when first demonstrating

1+2=3

and afterwards continuing the speech.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 36 of 98

This distinction can be relevant because paragraphs must possibly be also 

numbered for text navigation, implicitly, see Section 3.9. Nevertheless also explicit 

numbering can be applied to the lowest levels of hierarchy, as it is usual e.g. in the 

bible or in printed laws. Then the discussion of the numbering scheme for sections 

from Section 3.1 applies accordingly.

Also Definitions, Lemmata, Theorems, Theses, etc., esp. in mathematical texts, 

can be considered special kinds of paragraphs.

In general, the notion of paragraph is the fundamental organisational unit for 

line break calculation. In most MSF, the paragraph notion is not directly compositional, 

but only indirectly: Paragraphs may contain tables, which contain paragraphs, etc.

The sequence of paragraphs make up the contents of a section, and by the 

sequence of their kinds they constitute an implicit hierarchy, which is a kind of “down-

side prolongation” of the explicit hierarchy of sections. This hierarchy is defined by 

rules which refer to the possible sequences of paragraph kinds, and which are most 

naturally expressed by grammar rules.

E.g., in a mathematical text a paragraph of kind “Theorem” will be presented with 

special graphic appearance, numbering, etc. It is common habit that immediately 

afterwards a sequence of paragraphs follows which contain a proof of that theorem, 

the last of which terminates with a “q.e.d.” symbol. Alternatively it may follow a single 

paragraph which explains why a proof is omitted.

Similar, after a paragraph of kind “Definition” there may follow some paragraphs 

of kind “Example”. Furthermore there are “Normal” paragraphs without any special 

role. These rules are most adequately modelled by a context free grammar over 

paragraph kinds, as shown in Figure 2.

Figure 2: A Possible Grammar Over Paragraph Kinds.

TheoremAndProof ::= Theorem, (Proof | NoProof).
Proof ::= Paragraph+, Paragraph qed.
NoProof ::= Paragraph.
DefinitionAndExample ::= Definition, (Example*).
Example ::= Paragraph.
Normal ::= Paragraph.
Section ::= (Normal | DefinitionAndExample | TheoremAndProof)+.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 37 of 98

The nesting of recognised non-terminals, the “parse tree”, constitutes above-

mentioned implicit hierarchy, extending most naturally the explicit hierarchy of 

sections. (Please note that these rules are valid, but mostly not “reified”, ie. they do 

not appear explictly in the DTD grammars which come with the commonly used TMF 

implementations.)

Again, the borders are not hard: The example with the “Exercises” section at the 

end of each “Chapter” can also be modelled by dedicated paragraph kinds, in the 

realm of the implicit structure. Perhaps even more naturally.

As to a section kind, an explicit paragraph kind name and a numbering scheme 

may be assigned to a particular paragraph kind. The kind name may appear printed 

in the rendering or be used only for constructing references.

The numbering has a numbering reset scope, as defined above: it can restart at 

each section, but in most cases some higher level section kind triggers the counter 

reset. So a complete numeric coordinate can be constructed by appending the 

individual number to the coordinate of the section of that level. The numbers can be 

calculated for paragraphs of all kinds separately, or for several kinds together. Most 

other considerations on numberings from Section 3.1 apply accordingly.

Sometimes inventory lists = indexes are included in a text or rendering, referring 

to all paragraphs of selected kinds like a Table of Contents refers to sections. The 

possible variants discussed above apply accordingly.

3.2.1 Two-dimensional Rendering of Margin Paragraphs

Up to now a text model is a one-dimensional sequence, containing character data 

and mark-up. A critical phenomenon are multi-column paragraph renderings. This 

means that different categories of paragraphs are arranged horizontally, and their 

vertical alignment establishes a semantical relation. (This must not be mixed up with 

a through-out multi-column rendering of a one-dimensional text, where vertical 

positions meet accidentally.)

Mostly a main text is placed in the inner column of each page, and a smaller 

outer, marginal column contains additional information, or comprehensions or 

examples. These all are rendered as full-fledged paragraphs on their own, containing 



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 38 of 98

lists and images, etc., but often in smaller fonts. Or the marginal matter are only 

simple highlighted keywords, change bars, warning signs. These may be set in larger 

fonts.

In our abstract model, all this can be realised by dedicated paragraph kinds, 

coming with additional rules. These say (a) that all paragraphs of category cm are 

related to the nearest preceding paragraph of category cc, (b) cc is rendered normally 

in the center of the page layout, and (c) the cm-s are rendered in the marginal space 

and start at the same vertical position as cc. (These rules may conflict with general 

rendering rules, and further conflict resolving rules may be necessary.)

(An alternative modelling could put the whole text into one large “Table”, but 

this seems much less adequate for the common situations.)

(This mechanism is very similar to editorial annotations which are logically 

interspersed into the flow text, but also rendered in the marginal space, as it is 

common practice e.g. to indicate the page numbers of some reference edition.)

Manuscript and Typescript can create paragraph kinds and theorems etc. 

arbitrarily, by explicit keywords or visual mark-up. Index generation is (naturally) 

manual and error-prone.

Margin paragraphs are always possible, – famous is e.g. the layout of “Zettels 

Traum” by Arno Schmidt, a work, in which the geometric arrangement of text 

becomes substantial.

LaTEX has a mechanism for defining new theorem-like paragraph kinds (Lamport 

1986). Counters can be linked to one or more of these kinds, and the numbering 

reset scope can be set to any of the containing hierarchy levels.

The basic version does not foresee an automatic index generation for Theorems, 

etc., but this is easily programmable.

Additional library packages allow paragraphs to be rendered on the margin 

(“\marginpar”).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 39 of 98

Lout has paragraphs as the central organising unit for line breaks, with different 

strategies selectable per paragraph (Kingston 2013, pg.17). It has a display 

construct, which seems to break the paragraph notion (pg.33).

It has a predefined collection of special paragraph kinds (theorems, lemmas, 

corollaries, etc.) (pg.45) and a dedicated construct for margin notes (pg.43). (We 

could not find out whether these are full-fledged paragraphs.)

DocBook has an extensive but fixed collection of paragraph kinds related to 

its original purpose (=user documentation for information technology) like 

<caution>,<important>,<warning> … (Walsh 2010, sec.3.6.3).

Some of them respect whitespace and newline in the source text, like <screen> 

and <screenshot> (sec.3.6.4).

Some of the are even more specific for DocBooks application realm, 

like <procedure>, <cmdsynopsis>, <funcsynopsis> and 

<classsynopsis>, which are used to document command lines, as typed to a 

computer shell, “API” interface calls, etc. (sec.3.6.11).

Mathematical formulas can appear as dedicated paragraphs or “displays” by 

<equation>, and contain MathML source (sec.3.7.4) (W3C 2014). (They also 

can appear inline, see Section 3.6.)

TEI has only one single paragraph kind, tagged as <p>. There is no ubiquitous 

attribute like @class in HTML, so new flavours of paragraphs must be added 

explicitly by some customisation as new element tags.

HTML does support different paragraph kinds and different rendering by the @

class attribute together with CSS or XSLT style sheets. Numbering (of theorems 

etc.) can be automated using the counters introduced by CSS2. Margin paragraphs 

are out of the scope of pure HTML, but can be realised by the explicit positioning 

means of CSS3 and ECMA script.

OD-T specification says explicitly “paragraph […] is the basic unit of text in an 

OpenDocument file.” (Durusau and Brauer 2011, sec.5.1.3) Different flavours of 

paragraphs can be defined defined using the “<style>” mechanism.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 40 of 98

d2d_gp allows a “paragraph kind” for each paragraph. (Its role is similar to a 

“CSS class” and indeed translated into such when rendering into XHTML1.0.) The 

current standard back-end translations do not support Theorems with numbering, 

etc. But the “floatings” can be abused for this purpose, as long as they do not 

really float, since they provide automated numbering and index generation.

3.3 Two-Dimensional Constructs
3.3.1 Lists

So far text is a one dimensional sequence of character and mark-up. The mental model 

created by its reception but can be seen as something two-dimensional, having two 

axes, one for the parent relation and one for the sibling relation.

The next component type for structuring is a list, which can be seen as 

contained in a paragraph, and in turn contains a sequence of list entries, which 

are sequences of paragraphs. A list has a lead-in marker, preceding each list entry. 

This may be (a) one fixed symbol, like “+” “–” or “•”, indicating only the level in 

case of nested lists, or (b) a sequence number of the list entries, from one selected 

numbering system, or (c) character data, individually for each list entry. In case (b) 

the same variants are possible as discussed with section numbering, see Section 

3.1, esp. w.r.t gaps and numeric systems. Case (c) can also be modelled as a variant 

of tables, see below. The lead-in text is doubtlessly substantial, in contrast to the 

cases (a) and (b).

A list can be considered two-dimensional because it is constituted by a 

“horizontal indentation” and a “vertical text flow”. But it can also be modelled as 

a second prolongation of the overall hierarchical structure of the whole text, here 

becoming explicit again.

A central difference between the TMFs is, whether lists (and the other component 

types of this section) are (a) contained in paragraphs, or (b) siblings to paragraphs, on 

the same level. Due to the central role paragraphs play, see the dedicated Section 3.2, 

we prefer (a), because (b) would require to double instantiate all the grammar based 

logic described above and is farther away from compositionality, see Section 2.6. The 

property (a) we call ListSubP.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 41 of 98

Manuscript and Typescript: arbitrarily deep nested lists can be constructed, 

normally by indentation and one dedicated prefix for each level.

LaTEX and Lout support arbitrarily deep nested lists. The lead-in symbol can be 

a number from different numbering systems, or a fixed symbol, or some user-

defined text, changing with each item. The value for starting or continuing 

numbering can be overwritten. Lists are fully compositional: list items can include 

arbitrary text, including lists, paragraphs, tables, graphics, etc.

DocBook supports a collection of lists which are specialised for particular 

purposes, violating the SoC principle (Walsh 2010, sec.3.6.3).

TEI is one of the few frameworks which allows title texts for lists. (This could be 

regarded as a slight violation of SoC.) It allows explicit numbering of list items or 

label text (TEI-Consortium 2016, sec.3.7).

It is the only TMF foreseeing an explicitly selectable inline format for lists which 

(a) enumerate different topics, but (b) are part of the same sentence and thus (c) 

typeset in one line. (So these kinds of lists are visually “one-dimensional”!) This is 

a step towards linguistic analytic mark-up, which can go even further and finer, 

see Section 3.4.

HTML Supports lists with numberings, with constant lead-in symbols or with 

varying lead-ins (<ol>, <ul> and <dl>). Details of numbering and optical 

appearance are delegated to CSS 2.

OD-T Different flavours of list can be defined using the “<style>” mechanism.

OD-T also allows title texts for lists (Durusau and Brauer 2011, sec.5.3.3).

d2d_gp The basic default model has an utmost simple list model with different 

kinds of lead-in symbols or number formats. (Due to the principle of compositional 

and re-use, this model is meant to be replaced by a more elaborate one, according 

to the user’s needs.)

XML in general does know nothing about paragraphs, because these live on the 

level of a concrete XML instance.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 42 of 98

3.3.2 Tables

Another two-dimensional component type are tables. Their construction and 

definition are non-trivial, as the complicated historic process of the “CALS table 

model” shows (Bingham 2000).

For a simple model, it is sufficient to encode each table entry by its contents plus 

a pair of coordinates which gives the starting row and column. Each entry extends 

to the next higher entry’s coordinates, as shown in the left diagram in Figure 3. The 

identity of the text model is not defined by the sequential order of these table entries 

as represented in the source text, but by their effective coordinates.

In contrast, all bespoken TMFs except TEI do map the sequential order of the 

sources of the cells to the sequential order of the cells in the model: They follow 

source model coupling (SrcMC), as defined above in Section 2.3. This is (a) of course 

very convenient for simple cases, but (b) it is not a necessity (coordinates could be 

given explicitly) and (c) it restricts the expressiveness for more complex shapes of cell 

unions substantially: the cell structure in Figure 3(A) we call “L-shaped” = “table-L”. 

It cannot be described by pure table-SrcMC, – it requires explicit start coordinates. 

The cell structure (B) we call isolated table cells or “table-I”. It needs even more explicit 

input parameters, namely additional explicit end coordinates.

The rendering of the model becomes especially critical in case of speech 

synthesis, where the text has to be rendered line by line or column by column or 

somehow navigable. Whether layout information (e.g. relative column width values) 

is substantial or accidental is once more a critical question.

Figure 3: Table Cells De-Coupled From the Source Text Order.

(A) table-L (B) table-I

(1,1)

(1,2)

(3,3)

(1,4) (2,4) (3,4)

(1,1)

(1,2)-(4,4)

(3,3)

(1,5) (2,5) (3,5) (4,5)



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 43 of 98

On model level, tables can also be constructed with more than two dimensions 

(>2). Most simple example it the tabbed stack of input forms, ubiquitous in many 

Graphical User Interfaces (GUIs). These have “two-and-a-half” dimensions, because 

the positions on the third axis (= z-axis) are less strongly related then columns and 

rows.

Furthermore, table entries can be arranged truly spatial, in a grid of cubes, and 

in dynamic digital rendering this grid can be presented with varying aspect angle and 

eye position, controlled by the reader. This is hard to render and seldom found on 

paper. We expect it to become more frequent with the development of Computer-

Aided Reading (CAR).

Additionally, there may be a non-local property of tables which leads to an 

inter-cell alignment of text entries in all cells of the same column and different rows, 

controlled by some alignment character.

With the component types introduced so far, the principle of compositionality, 

see Section 2.6 above, begins to show its fundamental relevance: May lists contain 

tables? And tables lists? And table entries paragraphs, etc.?

There are more complicated flavours of tables, where the text entry is enriched 

by graphic elements, e.g. different styles of cell borders may carry some meaning, or 

free connecting lines between cells may indicate relations. This is on the half way to 

free diagrams.

Manuscript and Typescript: arbitrary (two-dimensional) tables can be 

constructed. In a limited way, two-dimensional pictures of three-dimensional 

tables can be drawn.

LaTEX has two sophisticated basic table models, for text mode and for math 

mode, resp. Both follow table-SrcMC (Goossens and Mittelbach 2004, pg.239). In 

principle, both are fully compositional. Column width can be left for automated 

calculation, or set explicitly by the user (normally calculated from the text 

dimensions dynamically).



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 44 of 98

Multi-column entries are supported, but no arbitrarily shaped multi-row-and-

column segments.

The separating insets and borders can be defined in a very flexible way.

Lout has an elaborate table model (realised as an additional package), supporting 

colspan, rowspan and allowing page breaks within tables. It follows table-SrcMC 

(Kingston 2013, pg.125).

DocBook imports two(2) different types of table definitions: from HTML and 

from CALS (Walsh 2010, sec.3.6.5).

The CALS table model is a historically important and rather elaborate one. 

(Bingham 2000; Walsh 1999) It supports source-model-DE-coupling, i.e. it allows 

to define table cells in any source order, it uses table-SrcMC only as its default 

mode. The CALS model supports one alignment character per entry, which refers 

to other entries in the same column.

TEI has a simple table model, following table-SrcMC. It additionally defines a 

versatile @role attribute for table cells. The documentation explicitly mentions 

the alternative to integrate an XML declaration of the CALS model (TEI-Consortium 

2016, sec.14). (What is called “alignment” in TEI are heavy-weight means on a 

semantic level and not comparable to a simple alignment character (sec.16.4).)

HTML comes with a very a simple table model as its standard. It is restricted to 

table-SrcMC. Nowadays rendering information will be added using CSS (W3C 

HTML Working Group 2011). CSS 3.0 introduces an alignment character by 

text-align=”,” (W3C HTML Working Group 2011, sec.7.1).

OD-T: The table model is re-used in text as well as in spreadsheets. Basically it is 

free recursive. The denotation of tables follows table-SrcMC. Different flavours 

of table can be defined using the “<style>” mechanism (Durusau and Brauer 

2011, sec.9).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 45 of 98

d2d_gp The basic default model has an utmost simple table model. It follows 

table-SrcMC.

(Due to the principle of compositional and re-use, this model is meant to be 

replaced by a more elaborate one, according to the user’s needs.)

XML in general does know nothing about tables, because these live on the level 

of a concrete XML instance. But there are standardised XML encoded table models 

available (like XHMTL tables or CALS) which can be imported and used by any 

user defined architecture.

3.3.3 Diagrams, Figures and Pictures

Free diagrams combine graphical elements with textual elements. Due to 

compositionality, the textual parts can contain everything like a flow text paragraph. 

Beside the graphic components carry substantial information, the textual 

components can nevertheless still be approximated by modelling it as a table, i.e. 

arranged in rows and columns.

A possibly substantially relevant new kind of information is that text can 

appear rotated. Already in simple tables a rotation of plus or minus ninety 

degrees is sensible, but perhaps not substantial. In free diagrams any angle may  

occur.

When including diagrams and pictures in some graphic file format, it may 

be a severe issue that text may “appear” therein, readable by the human eye, but 

not part of the text model. This should be avoided, since automated processing is 

impossible, and the reader can be irritated by failing search or search-and-replace 

attempts.

Therefore a better solution is CmpSS, defined in Section 2.4, which integrates 

the source text of the diagram, which in turn contains the text components with a 

readable and searchable representation.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 46 of 98

Manuscript and Typescript: arbitrary diagrams, figures and pictures can be 

included.

LaTEX has no genuine support for graphics, but a plethora of additional packages 

exist. There are two groups of additional functionalities: One to insert existing 

graphics into the rendered text flow, like postscript or PDF files, pixel graphics 

in png or jpeg format, etc. The main purpose of these functions is to integrate 

the graphics in the layout process of the different pages, so only their “bounding 

box” is relevant. Some of these functions allow to re-scale the input data, but the 

result may be insufficient.

The other group are graphic construction languages, like pstricks and pgf, 

which allow to describe a graphic directly in the same source text with the 

surrounding text (Compound Source Strategy (CmpSS), see Section 2.4).

Lout has embedded graphic and diagram description languages, thus it follows 

CmpSS, see Section 2.4. (Kingston 2013) It is very elaborated and versatile for 

approx. six different realms, but limited to these. Furthermore, like LaTEX, it can 

embed externally given graphic files.

DocBook has no embedded graphic language, but must import graphics in an 

opaque way (Walsh 2010, sec.3.6.8).

TEI: The element <graphic> includes a graphic object from some external 

file, identified by its URL (TEI-Consortium 2016, sec.3.9). There is an additional 

<figure> element which allows grouping of these insertions (sec.14.4). 

According to its genuine use cases, there is a second element for grouping, namely 

<facsimile> (sec.11.1).

While the general purpose graphic language SVG is not included per default, but 

needs explicit customisation, the standard comes with a libraries for specialised 

graphics, namely “Graphs, Networks and Trees” (sec.19). These all follow the 

CmpSS.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 47 of 98

3.4 Segments of Character Data, Highlighting
It is frequently necessary to select a contiguous segment of text character data and 

render it in a special way, to indicate some substantial property of this segment. As 

explained above, there are two fundamentally different technical means: tree-bound 

and tree-free text segments, see above Section 2.7.

HTML has from its first days means to embed external graphic objects, in different 

bit map formats. Contemporary technology supports SVG, which allows to embed 

graphic source text directly in the document (CmpSS).

OD-T has an integrated drawing language. Their elements can unrestrainedly 

by mixed with text elements. (Durusau and Brauer 2011, sec.5.1.3, sec.10) The 

principles of SoC and reusability are heavily violated, e.g. there are more than one 

kind of “anchor” elements, all doing the same and appearing everywhere. Again, 

OD-T seems a particular bad design.

d2d_gp The standard text model has a simple HTML-like element for graphic 

inclusion.

But the main strategy for graphic inclusion is CmpSS, and source text for different 

graphic languages can be embedded easily, as it has been frequently done for e.g. 

the the LilyPond music engraving compiler. (Lepper 2015)

XML in general relies on CmpSS and allows inclusion of other XML based 

standards. So “Scalable Vector Graphics (SVG)” (W3C 2011) may be included 

into the document’s substance for defining graphics. Such a graphic can in turn 

include recursively without a priori restrictions all types of element and data as the 

rest of the document.

The main problem in this context is that the different formalisms for document 

type declaration do not support free recursive instantiation, so that the intended 

text format cannot be reflected on the specification level.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 48 of 98

The model components highlighting/segmentation correspond directly to 

“mark-up” in the original sense of the word, which once meant to take a transparent 

marker pen and to draw lines freely in a text, crossing borders of sentences, paragraphs 

and sections. Also arbitrary overlaps with other mark-up segments are permitted, 

when using different colours, without the need of proper nesting.

This can only be modelled directly by a TMF which supports tree-free segments, 

including the additional consistency checks, as discussed above in Section 2.7. With 

tree-bound segments only, such a mark-up must be split into a sequence of element 

with a “continuous leaf front”, see Figure 1.

Seen from the application stand point, character data segments fall into very 

different use cases, with different granularity and complexity. Most of them are 

totally happy with tree-bound realisation.

First it may be distinguished whether the mark-up and its contents belong to the 

same or to different substantial layers:

Declaring a segment as “emphasised” or “very emphasised” can be done by an 

author, when constructing a first layer of a text, thus as part of the substance of 

this layer. (As discussed in Section 1.3, it is an open decision whether the optical 

appearance of this emphasis is substantial or accidental.)

But the emphasis can also be applied to that first layer T1 by an editor, and 

thus be part of the layer T2, as defined above, forming a multi-layer text, see 

Section 2.1.

Means for rendering are changing the font family or font variant, from upright 

to slanted, small caps or bold, different ways of underlining, framing, or even 

different colours for text or background, etc. In any case the substantiality of the 

rendering must be discussed. Anyhow, if the semantic definition of these segment 

types requires their compositionality (cf. Section 2.6), then this must be supported 

also by the chosen optical appearance, e.g. by translating to “underlined”, “bold” and 

“slanted”, which are freely compositional.

Segments can also be used to identify the contained text as an identifier of 

a specific kind, e.g. the name of a human or the title of an opus, but this will in 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 49 of 98

many cases imply additional navigation means and thus be treated according to 

Section 3.5.

The most complex segmentations naturally come from linguistics, because there 

text T1 itself, as such, is the subject of analysis. The mark-up belongs to a level T2 

of analysis, has very fine granularity and is tree-free. But also much less complex 

segments by an editor, e.g. change marks, will in many cases by tree-free.

But there are (a) other categories of segments which are always tree-bound, like 

personal names, and (b) applications which are accidentally properly nested, like an 

emphasis completely contained in an embedded foreign language text. For these, 

some frameworks which do support tree-free mark-up offer additionally a simplified 

implementation, which is again tree-bound and thus verifiable by the document type 

definition.

3.4.1 Multi-Lingualism

A frequent kind of segmentation, ranging over many paragraphs or only over a small 

fragment of a sentence, is used to identify text in a human language other than the 

main language of the document. This is usual for common terms ex gratia from logic 

and rhetorics, et cetera. In German type setting style, these are marked by fonts, 

formerly switching from Fraktur to Antiqua, or in modern settings from upright to 

italic shape, but not so in English texts.

A different form of multi-lingualism is the inclusion of a whole paragraph in a 

different language. This can most naturally be modelled as a dedicated paragraph 

kind, see Section 3.2. A translation into the text’s main language can follow 

immediately as a second paragraph. This arrangement can be enforced by grammar 

rules, as described above. Alternatively, the translation can be given as an annotation, 

see 3.7.

Both granularities of bi-lingualism have their own problems when the directions 

of writing in both languages differ.

A third format of multi-lingualism is a text with more than one (n>1) main 

languages, a multi-lingual document, where each paragraph appears as a sequence 

of paragraphs in the different languages. These may be arranged in sequential order, 



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 50 of 98

or graphically in parallel. This is a typical phenomenon e.g. for security advices in 

international hotels and in public transport. And on the Rosetta Stone.

Two further cases are seldom foreseen in TMFs: text segments (a) in an unidentified 

languages, and those (b) readable in more than one language.

Case (a) is quite frequent in archaeology: for years documents written in “Linear 

B” could be treated as texts, namely copied, printed and graphically analysed, but not 

assigned to a particular language. (This could be called a language-free text !-)

Case (b) can only happen in specially constructed texts like poems, riddles or 

mystery novels.

In Manuscript Typescript highlighting is done by underlining, etc., which is 

tree-free.

LaTEX provides commands for text layout which change font, size, colour, family, 

etc. These “physical” parameters can be used to stand for “semantic” mark-up, 

as described above, by macro programming. There are tree-bound and tree-free 

versions of all these commands, but programming can be become complicated 

when these are mixed. The mapping from some arbitrary semantic to the pre-

defined physical mark-up must be done explicitly by macro programming. This 

can be specific for one particular text body, or contained in a “style file”, realising 

the standards of a particular series of publications.

The additional package babel supports multi-lingual documents and small 

scope language switching.

Lout has one dedicated command for changing the documents language per 

text segment. This will affect the line break rules, which are borrowed from TEX 

(Kingston 2013, pg.25).

DocBook has the inline element <foreignphrase> (Walsh 2010, sec.3.7.3). Its 

language, that of the top-level <book> element, and of all intervening elements 

which support the db.common.attributes is set using the standard @

xml:lang attribute introduction to element reference.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 51 of 98

TEI provides some tree-free segmentations (see Section 2.7 above) 

by “empty” elements like <n:sentenceBoundaryStart> and 

<n:sentenceBoundaryEnd> (TEI-Consortium 2016, sec.20.2). All these are 

dedicated; regrettably there is no generic one.

It foresees dedicated elements to mark tree-bound character segments, mostly 

following linguistic categories, like <foreign>, <said>, <quote>, 

<mentioned>, <bibl>, <term>, <note>, and few somehow generic 

like <emph> and <hi> (= “highlight”), but no real generic one like <span> in 

HTML.

The full range of XPointer is incorporated for defining references (sec.16.2.4). With 

its range() construct, tree free segments can serve as the target of a reference.

HTML allows the mark-up of in-line fragments by the element <span> and 

of block elements by <div>. Both are only allowed as tree-shaped, and no 

combination is possible.

The roles of these segments can be defined freely by the @class attribute. For 

the special case of language switch, every element supports the universal attribute 

@xml:lang. So even so simple things like a hard line break <br> or a horizontal 

ruler <hr> exist in every thinkable language.

OD-T has tree-free segments for so-called “index marks”. These may overlap, but 

(rather arbitrarily) may not cross paragraph boundaries. The index marks land 

in one of the two predefined tables (ToC and register), or in a user defined one 

(Durusau and Brauer 2011, sec.8.1.2-8.1.9).

The same concept is realised for “change marks”, in a tree-free and a point-wise 

(=empty element) flavour (sec.5.5.7).

The more general concept are so-called “bookmarks” and “reference marks” 

(sec.6.2). Again, SoC does not happen and every feature is defined more than 

once.

The most general concept <text:span> does regrettably only exist in a tree-

bound version. It is intended to be linked to layout information (sec.6.7.7).



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 52 of 98

3.5 Entities, Definitions and References
Texts talk about things, these things have names, these names are employed to 

identify the things. These seemingly simple facts have been discussed by the earliest 

known philosophers up to most recent schools in scholarship, linguistics, informatics, 

brain research, etc., and dozens of very different theories have been elaborated. For 

the discussion of this article only few simple mathematical properties are needed, 

which can be derived from any theory and serve as a bridge to the merely technical 

requirements of the TMFs.

In general, it is necessary that the above-mentioned “names” must have the 

mathematical property of a function , which means un-ambiguity: a “thing we talk 

about” is a kind of concept as part of some mental model, and we call it entity. 

Un-ambiguity means that each name refers to only one(1) entity. Due to this, the 

name is said to be an identifier in the strict mathematical sense. In the context of 

a computing algorithm it is furthermore highly desirable that these identifiers are 

additionally injective, i.e. there is only one(1) such identifier for each entity.

There are two possible conflicts: For a human reader, the identifier should 

be made of words of a natural language. Basically there can be two strategies, 

d2d_gp supports physical highlighting and basic “semantic” mark-up like 

“emphasised” and “strongly emphasised”. All these are tree-bound. User 

instantiations frequently define their own, which may by tree-free.

d2d_gp has a dedicated “span” for fragments in foreign languages, a dedicated 

parameter for every paragraph for switching the natural language, and allows to 

declare multiple base languages per document.

XML in general supports both, three-free and tree-bound segments. It defines a 

general purpose attribute @xml:lang (one of the very few which live in XML 

namespace) which can be attached to any element the user allows, which is 

defined to indicate one human language for its contents, and which is taken over 

by all XML based TMFs.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 53 of 98

“unified name space” or “separated name spaces”. With the first strategy, the natural 

language word refers to an entity unambiguously. There is only one “Beethoven” 

and one “C major”. With the second strategy, the identifier is a pair of the natural 

language name plus a realm indication. So there can be two different entities 

called “C major”, namely a “key” and a “chord”, which are two substantially very 

different things. And the name “Richard III” can denotate a theatre play, a dramatis 

persona and a historic person, – even all of them in one single sentence. In these 

cases, when in the foreground of a text a natural language name is used for several 

things from different realms, then the real identifier (in the mathematical sense) 

is indeed a tuple of that name plus a realm indication. The latter is present in 

the structural middle ground of the text model, but not necessarily shown in a 

rendering.

The second issue is injectivity in the opposite direction: In the front-end text 

the natural language names may vary, representing the same identifier. We speak 

of “Beethoven”, “Ludwig van Beethoven”, “der junge Ludwig” or “the creator of the 

late string quartettes”. So the external representation of an identifier is something 

different than the identifier as such, and this fact must be respected by storing, 

retrieving, sorting, comparing, etc.

A recent development are canonical identifiers for entities, stored in authority files. 

Paper versions had been developed before 1900, and the electronically accessible 

implementations during the last decades. Prominent examples are GND for the 

German language, LCSH in US, NDL in Japan, VIAF for international integration 

(Bennett, Hengel-Dittrich, et al. 2007). None of the TMFs supports this special kind 

of identifiers directly. The KBSET project for scholarly editing and annotation is based 

on LaTEX and supports the annotation of each entity reference with a coupled pair of 

both human-readable identifier (=external representation) and canonical identifier 

(=model middleground) by automated data base look-up (Kittelmann and Wernhard 

2016).

Basically there are different cases for using entities, identifiers and external 

representations:



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 54 of 98

(a)  First, the entity can be assumed to be well-known. Then only refer-

ences appear in the text. Computer-Aided Reading may add further 

navigation paths in the text: From the reference to a particular entity 

one wants to navigate to the very first, the preceding, the next or the 

very last reference to the same entity.

(b)  In many texts, esp. in scientific texts, there are additionally formal 

definitions of the entities (indexed by the identifiers).

Such a definition can stand (b1) at the first reference to the entity in text order. This 

is the normal case for mathematical theorems, etc.

Or (b2) it can be contained in dedicated lists and sections, e.g. in a glossary 

contained in the appendices.

Or it can (b3) appear at some non-first reference in text order. Then the references 

before this definition are “forward references”. Normally these are only acceptable in 

“pre-material”, e.g. in a “foreword” or an “introduction”, to refer to some theorem 

later in the main text body.

In both cases we want Computer-Aided Reading also to navigate to that definition 

(which in case b1 coincides with the navigation to the very first reference).

Furthermore we often want a list of the text positions (encoded according to 

Section 3.9) of all references to a particular entity. These lists typically form an index. 

These references may be attributed additionally by some scalar value indicating 

“relevance”, or by the “kind” of the referring text (from the main flow text or from a 

figure or from a footnote?).

A very frequent setting is this: most index entries are of “normal relevance”; 

highly relevant paragraphs are marked by bold font page numbers, this includes the 

definitions; many references of minor interest are totally omitted: references into 

figures or diagrams are indicated by using an italic font.

All TMF follow “index-ScrMC”, i.e. “source model coupling” as defined above 

in Section 2.3: An index entry has to stand in the source text at exactly the place 

it is meant to target at. Only DocBook has a de-coupled version: The expression 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 55 of 98

“<indexterm zone=id> e </indexterm>” relates the index entry e to the 

whole contents of the DOM’s tree node with the XML identifier id and can stand 

anywhere in the source text (Walsh 2010, sec.9.1.1).

A special instance of (b2) are citations and bibliographies. In case of scientific 

papers, there are often two different “definitions” of the identifiers, namely the entry 

in the bibliographic list (type (b2)) plus a discussion in a “related work” section (type 

(b3)). In a larger monography the places of citations can in turn be listed by an index.

The presence or absence of a definition also applies to the overall subject of the 

text as a whole: A biography on Beethoven will not contain a dedicated “definition” 

of its topic, – or the whole text can be regarded as such a “definition”. Contrarily, 

a mathematical monography on “lattices” will start with an explicit definition of a 

“lattice”.

Frequently the entities appearing in a text are assigned to certain entity 

categories: e.g. in a text on music history there will appear composers, works, 

tonal keys, instruments, etc. (These categories live in the text middleground 

and may fall together with the above mentioned realms in the text foreground.) 

Often these different categories have specific rules for optical appearance. 

Entities of the different categories may appear in different indexes, even in 

more than one.

What is not supported in any of the TMFs are hierarchical identifiers: The 

name “Jan-Nydahl-Schule” is the name and identifier of a pedagogic institution, 

but its first two components form the identifier of a historic person. Similar 

with “Richard-Wagner-Festspiele”. None of the known TMFs does support this 

systematically.

In Manuscript and Typescript indexes are normally omitted. Definitions of 

type (b1) are easily marked up by underlining the external representation of 

the subject, by indentation or by short lead-in phrases. This can take the form of 

dedicated paragraph classes, see Section 3.2, and may include numbering.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 56 of 98

LaTEX comes with an accompanying program mkindex: some macros write out 

data to a file which serves as input; mkindex sorts and re-arranges the entries 

and generates a file with TEX macro definitions, which is fed back in a second 

LaTEX run. (Goossens and Mittelbach 2004, pg.647) Arbitrary many index tables 

of very different kinds can be supported, but this requires dedicated macro 

programming. The difference between external representation and identifier is 

easily handled, since the index entry does not contribute to the visible text. The 

data flow is similar for bibliographic entries, using the external program bibtex 

(pg.683).

Lout has an integrated elaborate index generation facility. Index entry points 

are not visible, which allows separation of identifier and external representation. 

(Kingston 2013, pg.62 pp) Lout has a predefined glossary format; an external 

representation in the flow text may be linked to the glossary entry, but only when 

it is verbatim equal to the identifier (pg.58 pp).

Citations and bibliography are very similar to LaTEX (pg.112 pp): the documentation 

claims that both are derived from the same original design by Leunen (1992). 

There is an external data base of bibliographic entries, which are referred to by keys 

and rendered according to the parametrisations in the text model. While LaTEX 

uses an external program, the processing of the data (selection of entries, sorting, 

rendering of citation keys, rendering of the bibliographic data) is integrated into 

the Lout translation process and can be customised by standard means. A new 

nice feature is @RefPrint which allows to render a single bibliographic entry 

directly, wherever wanted in the main text flow.

DocBook allows both: to notate indexes, glossaries, etc. manually, in a fixed form, 

as part of the text model, and the automated construction of these tables. The 

latter is recommended. For index generation, the text positions to appear in the 

index can be marked by dedicated elements. Since these do not print themselves, 

the independence of identifier and external representation is easily ensured.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 57 of 98

Index entry levels are fixed to dedicated elements <primary>, <secondary>, 

<tertiary>, thus violating compositionality. Tree-free segments as targets are 

first class residents, but hard to type since they need XML IDs and abuse the class 

attribute. More than one index is not supported (Walsh 2010, sec.9.1.1). A very 

nice and unique feature is the @zone attribute, which allows an index entry 

defined to cover the whole contents of any structural element (chapter, section), 

as long as this carries an @XML id attribute (sec.3.7.3).

A unique feature is that bibliographic lists can be given in one of two(2) forms: 

“raw” means as data base entries, which will be formatted by the processor. This 

resembles the treatment of bibliographic data in LaTEX and Lout, withstanding 

that here the text model does not contain a single output controlling parameter. 

The “cooked” form allows to write down for each bibliographic entry the linear 

sequence of entry components (=field values), still marked up with their semantics, 

but interspersed with all necessary punctuation. So rendering is restricted to 

changing fonts and weights, etc., but the finally rendered data is defined as part 

of the text model (sec.9.3).

Citations into this bibliography are inserted into the main text flow by 

<citation> (Walsh 2010, sec.3.7.2).

<citebiblioid> allows to refer to publications directly via “doi”, “isbn”, “issn”, 

“uri”, etc., which is a unique and nice feature in many use cases.

TEI has a huge system of element types and attributes for personal names, dates 

and places (TEI-Consortium 2016, sec.13). The additional “realm indication”, 

required for injectivity, is thus realised implicitly by the XML element type. This 

is convenient, but not extensible. Esp. unique is the mark-up of uncertain time 

ranges with lower and upper limits as in

<date notBefore=”1930” notAfter=”1935”>Early in the 

1930s</date>...

(sec.21.2).

A generic XML element for entity references is <term>; an explaining glossary 

entry can be added de-coupled from source text order by referring @xml:id 



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 58 of 98

3.6 Formalised Contents, Icons
The contents of paragraphs are “flow text”. Flow text normally contains written 

representation of sentences in some human language. In most cases this language is 

the same for the whole text.

Additionally, in these sentences entity references may be embedded which are 

more formalised than the human language’s words, e.g. a text on chemistry talks 

about H2O or a text on music about 
9b
7C .

(sec.3.3.4).

Automatic index generation is elaborate; multiple indexes are supported 

(sec.3.8.2.2). Further there is a module collecting element definitions for “all kinds 

of […] dictionaries, glossaries, and similar documents” (sec.9).

According to its genuine use case, there is extensive support for a “critical 

apparatus”, including automated collection of “variants and witnesses”, etc., which 

act like a specialised form of index generation (sec.12).

TEI supports the modelling of abbreviations and their expansions.

HTML does only support the technical infra-structure for links and anchors. 

Together with the mark-up (see Section 3.4) and the @class attribute, any 

semantic modelling device must/can be constructed.

OD-T has a built-in mechanism for index register generation, one standard and 

arbitrary many user-defined (Durusau and Brauer 2011, sec.8). See Section 3.4, 

where the mark-up of the target character segment is described.

d2d_gp allows the user to define its own entities. Their input side front-end 

representation is based on character parsers, which allow convenient and human 

readable notation “in the flow of authoring” for complex data structures.

XML in general does know nothing about concrete entities, because these live on 

the level of a concrete XML instance. The “<!ENTITIY..> mechanism” of XML 

seems hardly useful for modelling, but possibly as back-end target format.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 59 of 98

These formulas (from different disciplines) differ from normal text w.r.t. line 

and page breaking, graphic layout (see the “baseline skip” between the preceding 

lines), etc. Possibly they are two-dimensional. Additionally, a formula may serve as an 

identifier, with all the issues discussed in Section 3.5.

For longer and more complicated formulas, a rendering as a line display, (i.e. 

framed by line breaks) may become sensible, see Section 3.2. Again the border of 

substantiality may be critical.

A similar kind of embedding is to treat icons or small graphic pictures like words, 

embedding them into the flow of a sentence. In the last years this became common 

with “emoticons”, but there are very early examples like alchemical symbols, which 

can be treated as an domain specific expansion of the alphabet, with each character 

standing for a whole word. Nowadays this can be mapped to “user space” in the spare 

unicode planes, if it is not already standardised somewhere.

Manuscript: Arbitrary icons and formulas can be embedded.

Typescript: Up to 1980 it was usual to leave gaps when typing a text and insert 

complex formulas afterwards by handwriting.

LaTEX and Lout support two modes for mathematical formulas: either integrated 

in a line of flow text, or separately, limited by line feeds. Based on these, on the 

general “physical” text rendering control and on additional graphic functions, 

the rendering of “formal entities” can be realised arbitrarily, by dedicated macro 

programming.

DocBook has a whole zoo of in-line elements, more than thirty(30), specific to 

its main application, namely documentation of computer software: <prompt>, 

<literal>, <computeroutput>, <userinput>, <replaceable>, 

<accel>, <guibutton>, <guiicon>, <guilabel>, <keycap>, 

<keycode>, <classname>, <constant>, <errorcode>, 

<filename>, etc. (Walsh 2010, sec.3.7) (A little bit more SoC would have made 

this zoo more tidy!-)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 60 of 98

Esp. interesting are <tag> and <markup>, which render to the visual appearance 

of SGML/XML source text structures, in the sense of “reflection”.

Mathematical formulas can be inserted inline or as a paragraph, and are 

constructed using MathML (sec.3.7.4) (W3C 2014).

TEI has elaborate support for defining and integrating glyphs (TEI-Consortium 

2016, sec.5).

For music notation, mathematical formulas, chemical formulas, etc., third party 

formats may be integrated by the elements <formula> and <notatedMusic>. 

These are treated in a transparent way by TEI, i.e. no inner structure is defined 

and checked, but this is left to some external language definition, named by an 

attribute @notation. The source text for this external processing may be given 

by the XML contents of the element (following CmpSS), or by a <ptr> element 

pointing} to some external resource.

In this way, TEX, mathML and openMath can be used for mathematical formulas, 

and LilyPond, MEI, MusicXML, musixTex, etc. can be used for music notation.

HTML does only support the technical infra-structure for links and anchors. 

Together with the mark-up (see Section 3.4), the inclusion of images by <img> and 

the @class attribute, any semantic modelling device must/can be constructed.

OD-T supports to embed into the flow of text characters (a) graphics defined by the 

internal graphic languages, (b) graphics from external files, and (c) mathematical 

formulas.

(For (a) see the contents list of <text:p> in Durusau and Brauer (2011, sec.5.1.3); 

(b) goes via <draw:image>; (c) is possible via the nesting <draw:g><draw:

object><math:math> !-)

Using these, and the character segment mechanisms described in Section 3.4, 

special text entities can be constructed. They are not foreseen as first-class 

residents.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 61 of 98

3.7 Annotations, Footnotes, Apparatus
In printed and edited media, Annotations are normally rendered by decorating a word 

or a sentence in the flow text. This decoration establishes the connection to one or 

more paragraphs of commentary text which is rendered elsewhere and semantically 

stands beside the flow of reading of the main text. We speak of annotation mark and 

annotation text.

The only TMF which supports a graphic indication of the relation between 

a note and its point of reference (by a straight line, or sim.) is DocBook with its 

“<calloutlist>”, intended for source code explanations.

(In manuscript and typescript there are also annotations of a very different 

kind: connected to the referred text by free line drawings or inter-linear handwriting, 

not meant as a separate comment but to be inserted into the flow of text. These 

annotations reflect the creation process and have been resolved by the editing 

process before printing. While being an important subject of research, see Section 

4.3 below, they are of non-digital origin and therefore not discussed in this article. 

When creating a text with a TMF from scratch, instead source text level comments 

can be used, see Section 4.4 below.)

The combination of mark types and rendering positions constitute an annotation 

kind. The most frequent type of annotation marks are superscripted Arabic numbers; 

d2d_gp allows to embed dedicated modules for formula languages, based its 

character parser mechanism; MathML is supported by the standard text model 

and its XHTML rendering (W3C 2014).

XML in general does know nothing about formalised contents, because these live 

on the level of a concrete XML instance.

But nowadays there have evolved standardised and well-proven XML based 

definitions of formalised contents in nearly every realm of science and technology, 

from agriculture to theology, from ontology to toaster control, which can (and 

should) be re-used and imported.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 62 of 98

a numbering reset scope must be defined, as for any sequence number. But also 

lower case Latin characters and dedicated symbols can be used.

On the input side, nearly all TMFs follow SrcMC: The input syntax must appear at 

exactly the place where the annotation shall appear in the flow of text.

On the output side, typical places where to render the annotation text are (a) 

the bottom of the current page (the annotation kind is called “footnotes”), (b) the 

end of the current chapter (“endnotes”), (c) a dedicated section of the appendices 

(“apparatus” or “annotations” in a narrow sense). When commenting program source 

text etc., also (d) a side by side rendering of commented and commenting text is 

frequent, the relation between both given graphically, by connecting lines (see the 

“<calloutlist>” in DocBook).

It is common practice that annotation texts of one particular kind may contain 

annotation marks of a different kind. The resulting graph of applicability between all 

annotation kinds must be free of cycles. E.g., the main text bodies in the “Marx-Engels 

Gesamtausgabe” have a lot of footnotes by the original authors, marked by numbers, 

and the main text and these footnote texts can carry annotations into the appendix, 

by numbers in parentheses. Such an annotation text by the editors can grow to an 

essay on its own and again carry footnotes. So there are three (3) levels of annotation 

kinds, with application rules not allowing cycles.

Manuscript and Typescript: it is not easy to place longer footnote text, but in 

principle arbitrary strategies for applying notes are possible.

LaTEX and Lout have a simple and standard footnote mechanism off-the-

shelf. There are functions or packages for end notes and chapter-wise registers, 

etc. More complicated annotations can be realised by macro programming. LaTEX 

has ScrMC as a default, but also a de-coupled variant (Goossens and Mittelbach 

2004, pg.109), see the example above in Section 2.3. Lout supports only SrcMC 

(Kingston 2013, pg.40).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 63 of 98

3.8 Floats and Figures
Floats are components which are related to the overall flow of the text more loosely 

than the other components. They are (normally) referred to more than once, and 

always explicitly by referring to their numeric coordinate. As with theorems, the 

DocBook supports <footnote> only with SrcMC. A valuable feature allows 

multiple references to the same footnote text (Walsh 2010, sec.3.7.1).

A structure special for the purpose of program code documentation or screen 

shot explanation is the <calloutlist>, which links text blocks to different 

positions in the graphic object. It has a de-coupled source format. (sec.3.6.2).

TEI has a versatile <note> element, which can model end notes, footnotes, 

and man other kinds of annotations. Both ScrMC and de-coupled versions are 

supported. (TEI-Consortium 2016, sec.3.8.1).

HTML does only support the technical infra-structure for links and anchors. 

Together with the mark-up (see Section 3.4) and the @class attribute, any more 

complex structuring device must/can be constructed.

OD-T has an elaborate note mechanism based on the element <text:note>, 

which can appear ubiquitously in text elements. Different kinds can be defined 

via <text:notes-configuration> and @text:notes-class; all follow 

SrcMC (Durusau and Brauer 2011, sec.6.3).

d2d_gp the standard text model and its back-end rendering rules support one 

level of non-recursive footnotes; both SrcMC and de-coupled source are supported. 

(More complex architectures can be defined and plugged in.)

XML in general does know nothing about footnotes and notes, because these 

live on the level of a concrete XML instance. It provides the general @xml:id 

attribute mechanism, which can (and must) be used to link note marks to note 

bodies.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 64 of 98

numbering scheme may combine a sequence number with the coordinate of some 

containing section, and must define the numbering reset scope.

The concrete position of a float in the (one-dimensional) source text does not 

contribute to its substance; floats are a good example for explicit source/model 

DE-coupling.

In all renderings, the position of the float w.r.t. the references in the main body 

text is determined by ergonomic considerations. In paper realisation, the rendering 

of a float should appear near the place of the first reference. In screen realisation, it 

may be sensible to show them in a separate window.

Each float is assigned a float kind, and a numbering scheme covers one or more 

selected kinds, as explained above in Section 3.2 for paragraph kinds.

Each float must have a title text called caption which describes its contents. A 

table of all floats of a particular kind is normally found at the beginning or end of the 

rendering, and gives for each its numeric coordinate, its caption and some navigation 

means. As with section titles, a shorter title text may be specified for these tables. 

These tables correspond to the ToCs.

Manuscript and Typescript: in this medium, nothing can float. But anything 

can be inserted at any fixed place. If the text model is meant to be translated into 

print, then (a) the fact that this object will be allowed to float, and (b) constraints 

on its positioning must be given explicitly, by some meta information.

LaTEX and Lout support floating objects and the generation of index tables, 

based on their captions, per category. The position of these tables and their 

attributes are part of the text model. (New categories can be added only by macro 

programming.) The automated positioning of the floats is done heuristically, – 

quite frequent are situations where the outcome is not satisfying and needs user 

intervention (Lamport 1986).

Lout allows figures with “fixed positions” to be overtaken by “floats”, so the 

sequential order and assigned numbers in source and outcome may differ 

(Kingston 2013, pg.48).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 65 of 98

DocBook supports <figure>, <example> and <table> as floating objects, 

with caption, numbering, etc. Whether the object really “floats” in the rendered 

output, and whether it is listed in an initial “list of figures”, depends on the 

rendering process.

The construct <table> confuses a category of floating objects and the internal 

table structure. The documentation is unclear how to define “non-floating” tables, 

i.e. tabular structures as part of the main text run. This is a severe violation of SoC 

(Walsh 2010 sec.3.6.5).

All floats must be given an @xml:id attribute to be addressable by references 

from the main text, see Section 3.9.

TEI has a generic <floatingText> construct which allows to de-couple the 

intended model from the sequential order of the source text (TEI-Consortium 

2016, sec.4.3.2).

A different way is a declaration like “‘<figure rend=”float chapter”>’, 

which allows a figure to float in the given limits.

HTML has no support for floats. Complex positioning operations are possible 

by (a) manipulating a DOM with ECMA script, and/or (b) the box model and 

positioning options of CSS.

OD-T has a rudimentary support for floats, by element types <draw:frame> 

and <draw:floating-frame> (Durusau and Brauer 2011, sec.10.4). The 

concept of “Frames” is interesting and unique: different representations 

of the same conceptual contents, among which an application or a user may 

choose. But the realisation is again bad design, it hurts compositionality (only 

arbitrarily selected elements from the “drawing” realm can be contained) and 

its use for floating objects hurts SoC (floating has nothing to do with graphics, 

Section 10.4.1 of the spec says “Within text documents, frames are also used 

to position content outside the default text flow of a document.” This smells 

like a hack !-)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 66 of 98

3.9 References Into the Text
Frequently, a text wants to refer to (a) a different text as a whole. Or to (b) to a 

segment of text, or to (c) to some single point in the text flow, i.e. a text position. 

Cases (b) and (c) can refer to (b0/c0) the referring text itself, or (b1/c1) to a different 

text, as in case (a).

Case (a) is easily done via citations, a kind of entity, see Section 3.5. In the other 

cases additionally the human readable textual position description must be supplied, 

plus a computer readable technical position encoding, which allows e.g. an interactive 

viewer to jump to that location.

When referring to segments of characters (cases b0/b1), the difference between 

tree-free and tree-bound becomes relevant again, see Sections 2.7 and 3.4 above.

The textual position description can be synthesised from the technical position 

encoding as long as the segment corresponds to a text component which has a 

numeric coordinate plus a kind name. This yields texts like “section 2.3.1.4” or “Figure 

7.1”. (For this synthesis, the natural language of the document must be known, which 

can be non-trivial in case of multi-lingual documents.)

Addressing a text component of some finer granularity, or addressing an exact 

position in the flow of text (cases c0/c1), can in most cases only be achieved by 

an additional “manual” counting of paragraphs and sentences, as in “last sentence 

of last paragraph in section 2.3.1.4”. As soon as this happens, the exact borders of 

paragraphs and sentences, else an informal property, suddenly become relevant. This 

can be non-trivial, especially for tree-free segments.

d2d_gp: the standard text model supports arbitrary many series of floating 

objects, with user defined kinds, labels and captions. Its XHTML/CSS/ECMA-script 

back-end implements complex navigation and ToC generation with expand/

collapse.

XML in general does know nothing about floats, because these live on the level of 

a concrete back-end of a concrete XML instance.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 67 of 98

Referring to page numbers and page relative line numbers should normally 

be avoided, because it is specific for one particular paper rendering, which is 

in most cases not considered substantial, i.e. not part of the text model. (“This 

practice is not generally recommended [..] since the pagination of a particular 

printed text is unlikely to be of structural significance.” (TEI-Consortium 2016, 

sec.3.8.1))

A different case is when the page numbers of an important ancient printing 

T0 of the base text T1 are contained in the editors annotation layer of a modern 

edition T2, as the page numbers of the Bekker printing of Aristotle’s “Categories” 

(Kalvesmaki 2014) or the page numbers of the Rosenkranz edition of the “Kritik der 

reinen Vernunft”. In this case the historic page numbers of T0 are part of the model 

of T2 and rendered inline, as superscripts or sim.

Additionally, many historic text corpora are supplied with a canonical reference 

system, the human readable form of which has been standardised in the humanities: 

for the Bible, the Iliad, for the works of Aristotle and Shakespeare, etc. Kalvesmaki 

(2014) gives a survey how to integrate them into digital media.

Most TMFs allow to insert anchors at arbitrary positions in the text flow. While 

not always a textual position description can be synthesised, a digital rendering 

always allows to “jump” to the corresponding rendered position.

All anchor-relative numeric coordinates and thus all synthesised position 

description are automatically adjusted when a text evolves, e.g. when a 

section is inserted. Contrarily, all manually constructed location descriptions 

can become invalid, like “in the preceding section” or “see above[!] in  

section xxx”.

Pointing from T1 into the foreign document T2 would become much easier as 

soon as the anchor definitions of T2 would be considered substantial part of the 

model and thus “exported” and “visible from outside”. Currently no digital TMF 

supports this. Analysing the “.aux” file generated by LaTEX is technically possible, 

but must be considered “a hack”: the stability of its contents is not guaranteed by the 

author of the model.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 68 of 98

Manuscript and Typescript: references can be made to section titles and 

numbers, or to arbitrary text positions, in which case the reference text must be 

constructed manually. These links can be put in backward and forward direction. 

References to page numbers can (in most cases) only be put backwards; forward 

references must be back-patched.

LaTEX is not very consequent: The same anchor defining command

\label{α}

can be used in very different contexts, binding the user supplied identifier α to 

very different position informations: appearing in a caption of a floating object 

it binds to the numeric coordinate of the containing float; in main text to that 

of the nearest enclosing section; in a footnote it binds to its sequence number. 

The complementary \ref{α} command returns only that numeric coordinate, 

but all text (including the kind name) must be prepended manually by the user, 

which is error prone, e.g. when confusing “chapter” and “section”. The \pageref 

command returns the page number of the same position. Most informations are 

correct not before the second or third run of the LaTEX processor.

Contrarily, the library package varioref tries to synthesise natural language 

page identifications, like “on the next page”, taking into account the main human 

language of the text. There are few cases where this method does not find a 

fixpoint, the so-called “varioref jitter” (Goossens and Mittelbach 2004, pg.68).

Citing external texts is supported by “BibTex”, which is a chapter of its own. 

Co-ordinates in the inner of these external texts could be generated and rendered 

by analysing their “aux files”, but we do not know of any package supporting this 

kind of trans-document references.

An additional package (hyperref) allows to insert hyperlinks in the result, iff 

the PDF back-end is used (pg.78).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 69 of 98

Lout is more systematic than LaTEX and defines @PageMark/@PageOf as 

label/ref pair for page numbers of flow text. The general @Tag can be inserted 

into structures, like sections, figures, tables, and @PageOf/@NumberOf/@

TitleOf allow to retrieve these different values. Automated and explicit 

generation of hyperlinks is supported iff the PDF back-end is used (Kingston 

2013, pg.53pp).

DocBook provides element tags <anchor>, <xref>, <link>, <olink>, 

which span a net of cross references. The rendering is implementation dependent. 

All higher-level elements of the text model can be used as targets for the references 

by giving them an @xml:id attribute. The element <xref> generates the 

reference text automatically (e.g. “figure number 1.2”), while <link> requires 

the visible text defined in the text model explicitly (Walsh 2010, sec.3.7.2).

TEI supports the full range of XPointer addressing with its <ref> element, see 

Section 3.4 above. This allows free navigation, but only along the DOM’s technical 

tree structure. Contrarily, the @cRef attribute (allowed only for few selected 

element classes) realises a canonical reference, which is “any means of pointing 

into documents, specific to a community or corpus.” (TEI-Consortium 2016, 

sec16.2.5). Kalvesmaki (2014) describes the accompanying CITE/CTS project, 

which targets at more precise syntax definitions and HTTP-based implementation 

of canonical references.

HTML only has anchors <a id=...>..</a> as its positioning device. ECMA 

script and CSS allow the evaluation of XPath expressions, which allow to identify 

any position in a document.

OD-T has an elaborated concept for defining anchors and referring to documents 

and anchors. The definition is even tree-free and has been discussed above in the 

context of segmentation, see Section 3.4.

There is no support for bibliographic data base, or for rendering fine granular 

co-ordinates of a citation.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 70 of 98

3.10 Compositionality and Page Breaks
The mapping of the (mostly linear) character order to the pages of a printed copy can 

be considered part of the text model or not, as discussed in Section 1.3 above. Page 

breaks are contained e.g. in the models of programmed instruction books, see Section 

4.2. If not, the TMF must insert page breaks automatically whenever rendering a 

longer text for printing onto a sequence of paper sheets. This is controlled by style 

specific rendering rules, like “Avoid page breaks in the midst of a poem” or “Clear 

page before a chapter”.

Basically, the text model as such and the needs of the rendering process should 

be coupled as little as possible. But in practice this independence is not yet totally 

realised.

An important exception is e.g. the printing of LaTEX-tables which stretch over 

more than one page: Dedicated variants must be chosen by including packages like 

supertabular aut sim., which allow printing but have other restrictions (Goossens 

and Mittelbach 2004, pg.256).

There are other examples of these interdependencies, e.g. when printing 

graphics which are embedded in HTML. All these cases can be seen as a violation of 

compositionality: the choice of the tabular implementation is not longer independent 

from its application context, here: printing to a particular paper size.

d2d_gp has a complex architecture for synthesising absolute and relative 

reference texts, like “in this list, item number 7” or “in the preceding section, 

second list, item 2.1, second table, row 3, column 5”.

XML in general does know nothing about user readable text coordinates, because 

these live on the level of a concrete XML instance.

The accompanying standard XPath is a language to address all components 

of an XML encoded text body, elements, attributes and character data, by 

an almost compositional expression language. This is a natural candidate 

for a back-end for text references, together with the @xml:id mechanism 

mentioned above.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 71 of 98

Future evolution of software systems must aim at eliminating these 

dependencies, thus further clarifying the difference between model and rendering, 

between substance and accidentals, and augmenting the reign of compositionality.

4 Text and Time
The preceding sections described a statical model of text. The temporal dimension is a 

further orthogonal axis to that grid; its consideration raises philosophical questions 

about the essence and identity of text, as discussed by Huitfeldt, Vitali, and Peroni 

(2012). Most tasks in Digital Scholarship are temporal activities and related to 

temporal phenomena, see the standard textbook by Pierazzo (2015). The following 

section is again restricted to the technical questions and analyses few selected 

important use cases, with similar devices as in the preceding section.

4.1 Dynamic Physical Appearance (DPA) of a Text
One of the most important new features of digital text processing, beside automated 

comparing, indexing and search, is the Dynamic Physical Appearance (DPA) of a 

text rendering, on general purpose computer displays. (This section analyses the 

mere technical aspect; the very different applications are discussed in the following 

sections.) One and the same text model can be presented in very different views, 

controlled directly or indirectly by some user, e.g. the reader or the author or the 

editor or some software system.

There are many different applications of this feature. In principle, simple scrolling 

on a computer screen, and searching and highlighting of found occurrences by a 

simple PDF viewer is already a dynamic appearance. More elaborate is the expand/

collapse mechanism found on HTML input forms, or with program source text editors 

from some Integrated Development Environments (IDEs).

The possibility for these “physically dynamic” ways of presentation may (a) live 

totally outside of the text model, e.g. when a dynamic way of rendering is applicable 

to any contents, as long as it is encoded physically in the corresponding format.

Dynamic appearance (b) may be foreseen in the text model, as far as tool tips, 

captions, paragraphs and links of selected kinds are meant to pop up, collapse, 

expand, serve as jump targets, etc.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 72 of 98

It may (c) be totally controlled by the model, i.e. part of it in the narrow sense, if 

the model controls its outer appearance by a kind of musical score, which applies a 

series of transformations according to a fixed sequence of durations, or a by a state 

machine which reacts on user clicks, or by a combination of both. This is often called 

animation.

This distinction partly goes parallel to the distinction between two different 

sources of activity: the trigger for change can come from (I) an input activity from 

the user, or (T) the elapse of a certain time interval, after some preceding trigger.

Furthermore, changes can happen (α) gradually or (β) step-wise.

The following use cases employ different combinations of these alternatives.

4.1.1 Dedicated Hardware for Dynamic Text

A relatively new medium for presenting text are single-line LED displays which scroll 

a text from right to left, so that long sentences are readable in segments. Public 

transport companies use these in case of incidents to inform their passengers, (The 

type of DPA is aαT when scrolling or aβT when switching.) This reading situation 

clearly shows that this way of presentation induces a new kind of reception, which 

should be taken into account by the authors, but hardly is.

The principle of dynamic text rendering is much older, namely from the nineteen-

twenties. One source is the art of composing movie title sequences; another very 

different origin are the dynamically switched neon bulbs in illuminated advertising 

(“Time Square illumination”). Of course the latter were “hard-wired” and could only 

change between few variants. The contemporary version of this are the typical LED 

displays showing the state of a Späti door in Kreuzberg of type cβT, see Figure 4.

Figure 4: Score notation for an LED Display.

O - - - O - O - - - O -
- P - - P - - P - - P -
- - E - E - - - E - E -
- - - N N - - - - N N -

time



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 73 of 98

Manuscript and Typescript can appear in a dynamic way when physical layers 

are analysed by some X-ray process. This a common, but exceptional situation, 

since the dynamic appearance is not used to present different layers of the text 

model, but to construct (re-construct, explore, …) them. The type of DPA is bβI.

Dynamic appearance may be reached by scans/photographs of the original text. 

This is the basis of all techniques for movie title trailers in pre-digital times.

Nowadays scan data can be presented by digital processing in a dynamic way, as it 

is often done on websites which publish important historic documents.

But in visual arts much older methods to animate texts can be found:

Manuscript and Typescript are magnified and copied to transparent or semi-

transparent material and then subject to changes of the illumination, which 

brings dynamic changes of visibility, thus contents, thus meaning. The type is bαI 

or bαT.

Similar are the simple on-off dynamics from programmed instruction books:

The answer to a question is printed in black but covered with a confusing maze of 

red letters, – under red light the answer becomes readable (Type bβI).

LaTEX maps its output indirectly to “.dvi”, which is translated to postscript, or 

directly to PDF, in more recent implementations. Lout generates postscript or 

PDF directly.

Both these back-end formats, and thus the TMFs, are per se not capable of dynamic 

appearance. The more recent implementations which produce PDF directly allow 

to embed hyperlinks, which at least allows dynamic navigation.

Nevertheless, the famous NextStep operating system in the 1990s employed (a 

special dynamic extension of) postscript as the basis of its operating system GUI, 

which is doubtlessly a dynamic application (Adobe Systems 1993). The necessary 

animation could only be achieved by frequent (and efficient) re-generation 

of the displayed pages. In this sense, LaTEX and Lout could also be employed 

dynamically.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 74 of 98

LaTEX s packages for slide shows (see Section 4.5 below) implement an expensive 

work-around and produce for each dynamic slide a whole series of static pages, 

each of duplicates the constant parts redundantly, and which are projected one 

after the other. (Type bβI).

TEI contains temporal information in transcriptions of speech (TEI-Consortium 

2016, sec.8.3.6, 8.4.2, 16.5.2); with “performance text” it models simultaneous 

execution (sec.7.2, 16.5.1). So temporal information can be substantial part of the 

text model.

DocBook, TEI and d2d_gp do in no way specify or restrict the rendering back-

end, so dynamic presentation is possible, but not supported as first-class resident.

HTML does support physically dynamic rendering by actively changing the 

underlying Document Object Model (DOM), via (a) the use of ECMA script (Type 

bβI and cβT) or (b) the temporal control structures from SMIL (Dailey 2010; W3C 

2008) (Type cβT only). In combination with embedded SVG for graphics, which 

is typical for the application contexts described in the following, also type α = 

gradual changes, are possible.

OD-T supports animation elements according to SMIL (Durusau and Brauer 2011, 

sec.15), (W3C 2008). Again, SoC is violated since animation means are duplicated 

in different contexts by <presentation:animations>, <draw:anim> 

<anim:.., etc. They support interactive animations (type bI, via event handlers) 

as well as automated animations, controlled by duration values (type cT).

XML in general: SMIL is a generic concept for temporal changes, either smooth 

or stepwise, either interactively/user controlled or automated, and has been 

adopted to many different XML encoded model languages, including SVG. (W3C 

2008; Dailey 2010)



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 75 of 98

4.2 Interactive Reading (IR)/Computer-Aided Reading (CAR)
According to our initial definitions (see Section 1.3), a reading person cannot change 

the identity of the text, but its rendering. This we call Interactive Reading (IR).

An interesting historic pre-digital variant were the printed but interactive books 

for programmed instruction on paper = programmed instruction books, developed in 

the Sixties of the last century. Here the next page to read is presented according 

to some input of the pupil in the preceding step. This can simply mean to select 

between several page numbers, but can even include the automated generation of 

a “new” text, in the sense of our definitions, reflecting the user’s input. (DPA type is 

bβI) Due to these books, Computer-Aided Reading (CAR) (which is always interactive) 

is only a proper subset of IR.

Nowadays, these teaching systems are of course computer based, use all types of 

DPAs as described in the preceding section, and thus allow a much finer granularity, 

a much larger number of variants and the integration of other media like sounds and 

movies.

A most simple case of IR/CAR is a tool tip text which appears on a screen when 

the user’s pointing device touches the area of the visual rendering of a particular 

text component, and vanishes after a time out or when leaving this area (type bβI 

or bβI+T). Normally the tool tip text gives further information about an entity (cf. 

Section 3.5) or about a clickable jump target.

The nowadays popular e-book reader could enhance the possibilities of reading: 

even in fine arts, an electronic index could be very helpful. E.g. for keeping track of 

the more than two-hundred characters in “War and Peace”. One of the author prefers 

reading paper versions, but often misses an accompanying electronic index or search 

function, e.g. to retrieve a particular situation in the “Recherche” or an aphorism on 

a particular topic by Nietzsche.

CAR becomes esp. important to present multi-layer text, and to present time 

related structures contained in the text model as such, as discussed in the next 

sections.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 76 of 98

In general, CAR can be applied to present to all components described in the 

preceding sections in a more or less sensible way: collapse paragraphs of a certain 

kind, highlight entities and references, highlight table cells, columns and rows, etc. 

An implementation allowing this for arbitrary text models (of a particular meta-

model) is of type aβI.

The authors have programmed an SVG based import graph, which makes invisible 

all edges but those connected to the node currently pointed to (Lepper and Trancón y 

Widemann 2010, section “Containment Graph”). So very dense graphs can be made useful 

for the reader for information retrieval; this is a rather special variant of IR of type aβI.

André and Pierazzo (2013) describe the project for an interactive presentation 

of pages of a notebook by Proust, which visualises the historical temporal process 

of writing and editing by the temporal process of presentation. Similar ways of 

rendering will certainly be applied more and more in future.

When not only links are clicked but also text is entered (as in programmed 

instruction), then the border from IR to “interactive writing” may be crossed. When 

users fill out an empty form T1 given in PDF, then according to our definitions in 

Section 2.1 they create a new document (T2+T1).

For Manuscript and Typescript, dynamic appearance for a reader is only possible 

when scanned to some digital image format. In this context IR can be sensible to 

present the results of philologic research and the separation of layers by time and 

authors.

LaTEX and Lout: (n.a.)

DocBook does not specify a particular back-end. As candidate for dynamic 

presentation it provides several element types for cross references. A frequent 

processing strategy is the generation of HTML, which translates these references 

into links for navigation. Even more, descriptions of items can be realised as tool 

tip text, which pops up under the mouse pointer. Collapse/expand segments (by 

using additionally ECMA script/DOM transformations) are also rather frequent, 

see the DocBook documentation web site as its self-application (Walsh 2010).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 77 of 98

4.3 Historic Versions of the Same Text Document
Editors can model different temporal stages of a text T1 in course of their editing 

work, while creating the text T2. These temporal stages can be regarded as different 

versions of T1, or as substantially different and similar texts T1.1, T1.2, etc. Anyhow, 

the historic-temporal evolution of T1 is the real subject of the text T2, and T2 is 

the apparatus of a critical/genetic edition or even a larger linguistic study about T1. 

Anyhow, in the genuine application area of DocBook, namely computer software 

documentation, CAR is highly sensible.

TEI is a very versatile and module based system, which allows to construct complex 

and stratified formats for text models. IR can be highly sensible when one model 

combines different angles and strata of information. Esp. the temporal informations, 

as described in sections 4.3 and 4.4, are candidates for interactive reading.

HTML: dynamic presentation controlled by some user input can be realised by 

dedicated ECMA script code, which manipulates the Document Object Model 

(DOM) according to user events. Expand/collapse is quite frequent, e.g. in the 

wikipedia back-end. Tool tips are first class residents and ubiquitous by the  

@title attribute. But they are not compositional: their possible contents are 

limited to a simple text string without any formatting.

OD-T supports conventional navigation as first-class resident. By user controlled 

animation (Durusau and Brauer 2011, sec.19.402) more IR could be implemented, 

but this looks tedious.

d2d_gp: IR is related to the back-end, thus not to d2d_gp as such. But it is 

extensively used by some elaborate instantiations of d2d_gp, e.g. in musicology 

(Lepper 2015).

XML in general does know nothing about interactive reading, because this lives on 

the level of a concrete back-end of a concrete XML instance. But the embedding of 

animation standards and ECMA script for explicit DOM manipulation is foreseen 

to define dynamic behaviour.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 78 of 98

This can be even more complicated, since also different hypotheses on the temporal 

evolution of a text can be the real subject of T2: we get a “tree with three-coloured 

vertices”, representing evolution, inclusion and alternative theories.

Only TEI supports this explicitly, since it has been designed esp. for this use 

case, the encoding of historic text bodies. (As mentioned above, in all programmable 

systems like Lout and LaTEX, the necessary means can be realised by additionally 

plugged-in code.)

IR has already been employed successfully to present the different versions and 

layers of a historic text object. (André and Pierazzo 2013)

With Manuscript and Typescript the question for historic versions coincides 

with that of “work-in-progress versions”, as discussed in the next section. Indeed, 

the temporal order of text layers can be a question of central interest: Esp. in 

musicology (“Has this correction been added by the composer or by the premiere 

conductor?”), or when trying to edit the unfinished multi-stage pages written by 

Hölderlin and Proust.

Here a temporal sequence of stages may even be insufficient, but a multitude of 

hypotheses about different sequential orders may be the adequate model. In this 

case, not “one(1) text” does exist “realiter”, but a multitude of possible texts, each 

of which is a sequence of different stages. Then this multitude is the subject of 

scientific discourse, and thus the “reality” which must be modelled.

LaTEX and Lout do not have dedicated support, but of course can present different 

historic version with different renderings, controlled by macro programming. 

(The same holds of course for all other TMFs which support control of physical 

rendering and macro programming.)

DocBook does not support historic text versioning as first class resident, but 

the <info> meta information element, which can be attached to all higher 

level structural elements, allows to encode <author>, <authorgroup>, 

<date>, <edition>, <releaseinfo>, <revhistoriy>, etc., and 

could be used for this purpose (Walsh 2010, sec.3.5).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 79 of 98

4.4 Volatile Versions When Creating a Text Document
A somehow dual situation is given when the versions of creating a fresh document 

must be handled explicitly. The history of versions and the process of evolution is 

not part of the final model, as in the preceding section, but required for constructing 

it. But it may be considered part of a temporary text model. The related components 

will be removed from the text as soon as the final model is completed, but are 

needed during its construction phase. All related issues become esp. important in 

the frequent case of a multi-authors text.

Typical components are change bars, and the mark-up of text fragment 

elimination and replacement, as long as a technical manual or a legal text is on its 

way through committees.

In this context the Source Text Strategy (SrcTS) is very useful, see Section 2.2 

above, esp. in combinations with automated processing: All TMFs which follow 

TEI has been designed focused on historic text bodies. Therefore there is extensive 

support for modelling historic aspects, e.g. the physical matter of manuscripts 

(TEI-Consortium 2016, sec.10.7-10.9) and all kinds of corrections, deletions, 

changes, insertions, etc. (sec.11.3), including the colour of the ink used and kind 

of damage suffered.

It is also the only TMF which allows to model the authorship of an arbitrary small 

sub-segment of the text model by the @hand attribute.

HTML has dedicated support of text modification by the tags <del> and <ins>.

OD-T has elaborate elements for change tracking, which are intended for volatile 

versions, but can perhaps be abused to model historic layers (Durusau and Brauer 

2011, sec.5.5).

d2d_gp: the basic model does not support historic layers, but user instances 

easily can define the required element structures.

XML in general does know nothing about historic versions, because these live on 

the level of a concrete XML instance.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 80 of 98

SrcTS allow (a) to insert comments into the source, which are not part of the model 

(i.e. of the final, intended model, the model under construction), (b) to apply text 

processing standard tools like diff, grep, sed to the source text, and (c) to 

use version control systems like RCS or its younger competitors for assigning and 

controlling responsibilities among the authors involved. For this, the support of the 

TMFs is rather limited, see details below.

The possibility to assign individual modification rights to different authors is 

implemented in PDF, but in none of the discussed TMFs. But XML in general does 

allow to implement it rather easily, when the act of “storing the model” would be 

defined on the level of DOM nodes, instead on the textual representation. To our 

knowledge, this mechanism has not yet been implemented in a generic way. It could 

be used immediately by all XML based TMFs (DocBook, TEI, HTML, OD-T, d2d_gp).

A slightly different case, but important in practice, is the addition of annotations 

on a separate, dedicated data layer, as it is implemented e.g. in the PDF framework. In 

this case a second text T2 is created, discussed above in Section 2.1 als multi-layered 

text. The author of T2 is the reader of the first text T1, and the structure of T2 is 

defined upon the structure of T1.

E.g., one of the authors defined a very efficient communication protocol between 

himself as composer and a contracted sheet music engraver: each issue was modelled by 

one PDF “annotation balloon” in the music score under creation, T1. The colours were 

assigned: one for each side for their initially entered comments, followed by a precisely 

defined state machine for the issues’ resolution process, reflected in colour changes.

With Manuscript and Typescript, the historic layers and the volatile layers 

mostly coincide, see Section 4.3. An exceptional case is reported by Goethe, who 

inserted white paper sheets for the missing scenes into the growing manuscript of 

“Faust II”, for to get a haptical feeling for the work still to do, and thus additional 

motivation. These empty pages have been replaced by written ones, so they are 

part of the volatile, but not of the historic layers. (Talk to Eckermann, 17.Feb.1831) 

(Goethe 1986, pg.463).



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 81 of 98

LaTEX does support dynamic creation aspects by the additional package version, 

which allows text fragment combination on the source text level under program 

control.

The normal glyph renderings supports things like strikethrough, which 

can be used for version indication by explicit macro programming. A dedicated 

package adds changebars.

Lout’s macro programming could realise something like LaTEXs version 

package. Stroke out characters and margin paragraphs can be employed to 

represent an editing history.

DocBook provides sidebar, which can be used as change marker (Walsh 2010, 

sec.3.6.12). As described in Section 4.3, the meta info element info can be used 

for temporal information.

TEI uses @resp (TEI-Consortium 2016, sec.11.3.2.2) and <respons> (sec.21) 

to indicate the person responsible for particular decisions in the mark-up process, 

and @cert (sec.11.3.2.2) and <certainty> (sec.21) to indicate the certainty 

of a particular decisions. By these means, meta information becomes part of the 

document model.

One may use @note (sec.3.8) also for meta-information, describing the current 

state of a transcription process.

HTML has dedicated support for the rendering of text modification by the tags 

<del> and <ins>.

OD-T has elaborate elements for “change tracking” (Durusau and Brauer 2011, 

sec.5.5).

d2d_gp supports volatile versions by the source text strategy (SrcTS).

XML follows SrcTS, which allows the application of version control systems with 

automated change reporting. It supports comments which can be used in a text 

construction process. Individual modification rights for collaborating authors 

could be defined in a generic way.



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 82 of 98

4.5 Animated Text in Slides and Presentations
Animated text for slides is not supported directly by most TMFs, but by some sibling 

software. So microsoft offers the (in-)famous “power point” as part of their “office” 

package, a sibling to “ms word”, and OD-T has a zoo of <presentation:..> 

elements in parallel to its text model.

The beamer package (Tantau, Wright, and Miletić 2011) and some older 

predecessors (seminar, prosper, FoilTex, etc.) are plug-ins for LaTEX.

Slides are “dynamic” by definition and in their ancient realisation, because 

they are a sequence of images presented to the public by projection, one after the 

other, ordered in time, following the tempo of a life speaker (DPA type bβI) or a 

prefabricated tape (bβT).

This can be (and historically has been) limited to a mere sequence of static 

picture contents. For our subject we have to ask for dynamic behaviour of the text 

contents of one single such slide.

Here we have different features:

In “Power Point”, everything can “fly in”, “fade out”, “crumble” or “explode” (DPA 

type cαT). But only by selecting from a fixed set of “effect generators”, which offer 

a fixed sets of parameters each, and basically operate on pixel graphics. There is 

no principle limit, but a practical, since the particular effect generators must be 

available.

The beamer LaTEX package allows arbitrary change of text content, controlled 

by a concept of “phases”, e.g. replacing one text fragment by another. An instance of 

this is the semi-automated change of visual aspects, for fading-in of the items of a 

list one by one, etc. The temporal definitions have the granularity of stages (DPA type 

bβI); smooth moving, dynamic fading and exploding are not supported.

With all XML based formats, the combination of the extensions Scalable 

Vector Graphics (SVG) (W3C 2011) and the animation features of Synchronized 

Multimedia Integration Language (SMIL) (Dailey 2010; W3C 2008) can be used. 

These allow in principle all kinds of temporal behaviour: position, rotation, colour, 

transparency, font size, etc. of each text fragment can be changed gradually over 

some time interval, in arbitrary parameter value curves. (Generally DPA type 



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 83 of 98

bαT), but exchange of fonts can only happen stepwise, and exchange of text 

contents only by switching on and off the visibility of different text objects (both 

of type β). This approach follows Compound Source Strategy (CmpSS): Text stays 

text, even under graphic transformations, and thus can be subject to search and 

replacement.

The construction of these temporal structures is awesome, and misses “text 

quality” (in the sense of a “direct reification” of a mental model), because there is 

no simple direct relation between the intended time functions and the demanded 

expression syntax.

So we have three fundamental different strategies, with different pros and cons 

each:

1. Arbitrary and smooth image transformations, on all parameters, and even 

on pixel level, but only by predefined processors (“powerpoint”).

2. Non-smooth exchange of text components and of all text rendering 

parameters, without moves (LaTEX).

3. Smooth image transformations, not arbitrarily on pixel level (no “blur” 

nor “crumble”), but on most text rendering parameters (colour, size, trans-

parency, position and rotation) by SVG+SMIL.

The constructions of these transformations, in the current implementations, have 

again very different grades of flexibility:

1. No means for abstraction and automation, only interactively definable 

and stored in an opaque binary format (“powerpoint”).

2. Fully under program control, easily abstractable and convenient usage 

(LaTEX).

3. Fully under program control and abstractable (ECMA script, DOM model, 

etc.), but counter-intuitive expression language, very hard to write down 

manually (SVG+SMIL).

Interestingly, the types of supported triggers are complementary:



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 84 of 98

1.+2.  The frameworks intended for slide shows (“powerpoint” and LaTEX 

packages) basically react only on user input.

 3.  The (SVG-SMIL) animations are executed according to fixed duration 

values, defined in the source text, i.e. part of the text model. User 

input triggering requires explicit additional coding (manipulating the 

DOM with ECMA script, etc.) But coding allows also the combination 

of both trigger sources.

Manuscript and Typescript: (n.a.)

LaTEX supports slides generation by dedicated packages, see discussion above.

Lout (We do not know about an additional package for slide generation, but of 

course this would be feasible.)

DocBook has no genuine relation to slide generation, but of course processors 

(which are not defined in the standard) could extract e.g. the elements dedicated to 

program documentation (like <programlisting>, <computeroutput>, 

<cmdsynopsis>) for integrating them into a slide presentation.

TEI models can contain explicit temporal information, see Section 4.1 above. 

Translations to SVG/SMIL etc. could present the text accordingly.

HTML: as with interactive reading (see above), dynamic presentation controlled 

by some user input can be realised by dedicated ECMA script code, which 

manipulates the DOM according to user events.

OD-T does not support slides generation, but a sibling application does, see 

general remarks above. The corresponding elements are in the namespace “{urn

:oasis:names:tc:opendocument:xmlns:presentation:1.0}

presentation”, (Durusau and Brauer 2011, sec.9) A possible toplevel element 

chain is



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 85 of 98

4.6 Animated Text in Visual Arts
In visual arts the animated presentation of text has a history of nearly hundred years, 

starting with the graphics of movie title sequences, as mentioned above. A more 

abstract, more recent and explicitly artificial example has been the video “Sign o’ the 

Times” by Prince in 1987. (Nilsen 2004, pg.623, acc.to wikipedia)

As mentioned in the previous section, the combination of XML plus SVG 

plus SMIL has a very satisfying range of effects as its outcome, but cannot be 

denotated in an intuitive way. Therefore the authors wrote translation software 

based on their tscore time representing formalism, for easy denotation of 

temporal artistic text processes. The result has been published as a combination 

of source text, binary application, example score data, generated output, i.e. 

animated typographic art, and documentation (Lepper and Trancón y Widemann 

2013a, 2013b).

Of course, the translation code is dedicated to one particular setting of input 

score format and intended output animation style. The programming language 

(here: Java) is the means for defining and realising the relation between these two. 

But this specific text needs only two to three pages, it is easily adopted to other 

intentions.

<office:presentation><draw:page><draw:rect><text:p> …

which allows a very restricted kind of compositionality. (The other way round 

every text may contain arbitrary graphic elements, see Section 3.3.3.)

d2d_gp does not support slide generation. (A user defined extension is of course 

possible, but not intended yet.)

XML in general does know nothing about slide show production, because this 

lives on the level of a concrete back-end of a concrete XML instance. (We do 

not know of any attempt to model slides, but of course this is possible in 

principle.)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 86 of 98

4.7 Online Information Systems
Even the “identity of a text itself” (as defined in the fundamental discussion above, 

see Section 1.3) can be variable. This is the case with online information systems: e.g. 

the current prices on a stock exchange are often presented on screen in tables, in 

one column the company’s name, in the next the figures changing in real time. But 

of course these figures could also appear in a flow text, changing also the wording 

of the sentences and the colour of the mark-up dynamically, replacing a bull icon by 

a bear.

In any case, these online information systems require to support dynamic 

appearance, as defined in Section 4.1.

Manuscript and Typescript do appear in animated form in visual arts quite 

frequently, nowadays mostly by scanning and projection. See Section 4.1 for pre-

digital methods for animating text objects.

LaTEX and Lout are suited for this purpose only in the limits discussed for slides, 

see preceding section.

DocBook (n.a.)

TEI (n.a.)

HTML: The physically dynamic rendering is realised by SMIL expressions, which 

directly contain HTML or SVG expressions, for fixed scheduled execution. (In 

contrast to the control by user events and ECMA script in the preceding use cases.)

OD-T supports dynamic rendering by SMIL animation, as described above. So in 

principle it can be used for dynamic texts in arts. We assume that programming 

will be tedious, and that not many client programs will render correctly.

d2d_gp: (not supported in basic model; model definition possible.)

XML in general does know nothing about animated text in visual arts, because 

this lives on the level of a concrete back-end of a concrete XML instance.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 87 of 98

Manuscript and Typescript (n.a.)

LaTEX and Lout are suited for this purpose only in the limits discussed for slides, 

see Section 4.5.

DocBook does not define the processing of the text model. Therefore dynamic 

elements can be integrated without fundamental problems: e.g. a sequence 

made of <userinput>, <replaceable> and <computeroutput> can 

be rendered as an HTML input form, the activation of which leads to dynamic 

evaluation of the user input and a new visual output.

TEI mainly defines static text models, but few attributes with an “URL-like” data 

type indeed refer directly to an online resource, as in <keywords scheme= 

”http://id.loc.gov/authorities/about.html#lcsh”>… (TEI-

Consortium 2016, 2.4.3), or in <w lemmaRef=”http://lexicon.

org/latin.xml#danaii”>Danaos</w>

(TEI-Consortium 2016, 17.1.1).

HTML can be used for online information systems, either by its own dynamic 

features (ECMA script operating on DOM, as described above), or by embedding 

“objects” or “applets” which execute dynamic display of data, related to the 

surrounding HTML text only for positioning/scrolling/etc.

OD-T: while animating arbitrary text looks tedious and thus deprecated (see 

Section 4.1 above), the presentation of dynamic data input is first class resident. 

For this “dynamic data exchange” dedicated elements are foreseen, namely 

<office:dde-source>, <office:dde-application>, <table:dde-

link>, <text:dde-connection-decl>, etc. But the rendering of the 

dynamically received data information is intended to be done by the spreadsheet 

program, not as part of dynamically rendered text.

d2d_gp: (not supported in basic model; model definition possible.)

http://id.loc.gov/authorities/about.html#lcsh
http://lexicon.org/latin.xml#danaii
http://lexicon.org/latin.xml#danaii


Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 88 of 98

5 Comprehensive Table of the Characteristics of the 
 Different Text Modelling Frameworks
The following Tables 1 and 2 shows in short notation the most significant results 

from all preceding sections. The meanings of the entries are …

YES = unconditionally supported

(y) = can be implemented using other features

NO = not supported in any case

(n) = normally not supported

– = not applicable

(src) = can be realised on source text level.

Q0 = requirement is fulfilled badly.

upto

Q5 = requirement is fulfilled optimally.

Remarks in the table:

×1 = SVG elements supported

×2 = some proprietary graphic languages

×3 = induced by the MSSPP

×4 = when using the “CALS table” variant

×5 = requires CSS with version ≥ 3

×6 = by use of CSS classes

×7 = by use of style definitions

×8 = by use of SVG and SMIL

×9 = in the very special case of “programmed instruction”

×10 = list numbers for all items may be given explicitly

XML in general plays a fundamental role in online information systems, because 

nowadays the format of many data sources is XML encoded. So this data is “text” 

in a technical sense, but in almost all cases treated like “binaries” and translated 

into a very different format for presenting it to humans.



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 89 of 98

Ta
bl

e 
1

: S
ur

ve
y 

of
 C

ha
ra

ct
er

is
ti

cs
 I.

se
ct

io
n

M
s.

Ty
pe

.
La

T EX
 

Lo
ut

 
D

oc
Bo

ok
TE

I 
H

TM
L 

O
D

-T
 

d2
d_

gp
 

X
M

L

So
ur

ce
 T

ex
t S

tr
at

. (
Sr

cT
S)

 
2.

2
– 

– 
YE

S
YE

S
YE

S
YE

S
YE

S
no

YE
S

YE
S

XM
L 

ba
se

d 
 2

.2
no

 
no

 
no

no
YE

S
YE

S
YE

S
YE

S
YE

S
–

Tu
ri

ng
 c

om
pl

et
e 

 2
.2

no
 

no
YE

S
YE

S
no

no
no

YE
S

no
–

M
ul

ti
-L

ay
er

/A
ut

ho
r 

 2
.1

YE
S

YE
S

(y
)

(s
rc

)
(s

rc
)

YE
S

(s
rc

)
–

(s
rc

)
(s

rc
)

Te
xt

 G
ra

ph
ic

 A
rt

 
 1

.7
YE

S
YE

S
YE

S
YE

S
no

no
YE

S 
(×

6)
no

no
–

Co
m

po
un

d 
So

ur
ce

 
St

ra
te

gy
 (C

m
pS

S)
 

2.
4

–
–

Q
5

Q
1

Q
1 

(×
1)

 
Q

3 
(×

2)
Q

1
–

Q
4

Q
5

Se
pa

ra
ti

on
 o

f C
on

ce
rn

s 
(S

oC
), 

re
su

ab
ili

ty
 

2.
5

– 
–

Q
5

Q
1

Q
1

Q
3

Q
1

Q
2

Q
4

Q
5

Co
m

po
si

ti
on

al
it

y 
 2

.6
– 

–
Q

4
Q

4
Q

1
Q

2
Q

2
Q

2
Q

4
Q

4

Tr
ee

 fr
ee

 s
eg

m
en

ts
 a

nd
 

hi
gh

lig
ht

in
g 

2.
7,

 3
.4

YE
S 

YE
S

(n
)

(n
)

YE
S

YE
S

N
O

N
O

(n
)

(n
)

N
um

b.
 o

f t
it

le
s 

pe
r 

se
ct

io
n 

 3
.1

n 
n

2
1

1
n

n
n

2
–

Pr
op

er
ti

es
 o

f t
he

 e
xp

lic
it

 
hi

er
ar

ch
y 

 3
.1

1,
3(

×3
)

1,
3(

×3
)

1–
4,

7
1–

4,
7

1–
4,

7
no

ne
1

no
ne

1–
4,

7
–

A
ut

om
at

ed
 T

oC
 

ge
ne

ra
ti

on
 

 3
.1

N
O

 
N

O
YE

S
YE

S
YE

S
YE

S
N

O
YE

S
YE

S
–

N
um

be
ri

ng
 s

ch
em

e 
va

ri
ab

le
 

 3
.1

YE
S 

YE
S

YE
S

YE
S

N
O

YE
S

–
YE

S
(n

)
–

(C
on

td
.)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 90 of 98

se
ct

io
n

M
s.

Ty
pe

.
La

T EX
 

Lo
ut

 
D

oc
Bo

ok
TE

I 
H

TM
L 

O
D

-T
 

d2
d_

gp
 

X
M

L

Pa
ra

gr
ap

h 
ki

nd
s 

de
fin

ab
le

? 
 3

.2
YE

S 
YE

S
YE

S
(n

)
N

O
YE

S
(y

) (
×6

)
(y

) (
×7

)
YE

S
–

In
-p

ar
ag

ra
ph

 d
is

pl
ay

s?
 

 3
.2

YE
S 

YE
S

YE
S

(y
)

YE
S

YE
S

(y
) (

×6
)

YE
S

YE
S

–

M
ar

gi
n 

pa
ra

gr
ap

hs
? 

 3
.2

.1
YE

S 
YE

S
YE

S
YE

S
YE

S
(y

)
(y

) (
×6

)
no

(n
o)

–

In
lin

e 
lis

ts
 

 3
.3

.1
YE

S 
YE

S
(n

)
(n

)
(n

)
YE

S
(n

)
N

O
(n

)
–

Li
st

 s
ta

rt
 n

o.
 a

dj
us

ta
bl

e 
 3

.3
.1

–
–

no
YE

S
YE

S
(y

) (
×5

)
y 

(×
5)

 
(y

) (
×1

0)
YE

S
–

Fr
ee

 b
ul

le
t s

ym
bo

l 
 3

.3
.1

–
–

no
YE

S
(y

)
YE

S
y 

(×
5)

 
YE

S
YE

S
–

Li
st

Su
bP

 
 3

.3
.1

–
–

no
(n

)
N

O
N

O
N

O
N

O
YE

S
–

Ta
bl

es
 fo

llo
w

 S
rc

M
C 

 3
.3

.2
–

–
YE

S
YE

S
N

O
 (×

4)
 

N
O

 (×
4)

YE
S

YE
S

YE
S

–

Ta
bl

e-
L 

an
d 

ta
bl

e-
I c

el
ls

 
 3

.3
.2

YE
S 

YE
S

(n
)

(n
)

YE
S 

(×
4)

 
YE

S 
(×

4)
N

O
N

O
(n

)
–

A
lig

nm
en

t a
cr

os
s 

ro
w

s 
 3

.3
.2

YE
S 

YE
S

YE
S

(n
)

YE
S 

(×
4)

 
YE

S 
(×

4)
(y

) (
×5

)
N

O
N

O
–

D
ia

gr
am

s 
in

 s
am

e 
so

ur
ce

 
(C

m
pS

S)
 

 2
.4

, 
3.

3.
3

–
–

(y
)

(y
)

N
O

(y
) (

×2
)

(y
)

(y
)

(y
)

–



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 91 of 98

Ta
bl

e 
2

: S
ur

ve
y 

of
 C

ha
ra

ct
er

is
ti

cs
 II

.

se
ct

io
n

M
s.

Ty
pe

.
La

T EX
 

Lo
ut

 
D

oc
Bk

TE
I 

H
TM

L 
O

D
-T

 
d2

d_
gp

 
X

M
L

M
ul

ti
pl

e 
m

ai
n 

la
ng

ua
ge

s 
 3

.4
.1

(y
) 

(y
) 

(y
) 

–
N

O
 

YE
S 

N
O

 
N

O
 

YE
S 

N
O

La
ng

. p
er

 p
ar

ag
ra

ph
 

 3
.4

.1
(y

) 
(y

) 
(y

) 
XE

S 
YE

S 
YE

S 
YE

S 
N

O
 

YE
S 

YE
S

La
ng

. p
er

 re
gi

on
/s

pa
n 

 3
.4

.1
(y

) 
(y

) 
(y

) 
YE

S 
YE

S 
YE

S 
YE

S 
N

O
 

YE
S 

YE
S

Se
m

an
ti

c 
ca

te
g.

 fo
r e

nt
it

ie
s 

 3
.5

(y
) 

(y
) 

(y
) 

(y
) 

YE
S 

YE
S 

N
O

 
(n

) 
YE

S 
–

A
ut

om
at

ed
 in

de
x 

ge
n.

 
 3

.5
N

O
 

N
O

 
YE

S 
YE

S 
YE

S 
YE

S 
N

O
 

YE
S 

YE
S 

–

M
ul

ti
pl

e 
in

di
ce

s 
 3

.5
(y

) 
(y

) 
YE

S 
YE

S 
YE

S 
YE

S 
N

O
 

YE
S 

YE
S 

– 

D
iff

er
en

t i
nd

ex
 k

ey
w

or
d 

so
rt

in
g 

vs
. a

pp
ea

ra
nc

e 
 3

.5
–

–
YE

S 
N

O
 

(y
) 

YE
S 

–
N

O
 

YE
S 

–

“F
uz

zy
” 

da
ta

; r
an

ge
s 

of
 v

al
. 

 3
.5

YE
S 

YE
S 

N
O

 
N

O
 

N
O

 
YE

S 
–

N
O

 
(y

) 
–

H
ie

ra
rc

hi
ca

l i
de

nt
ifi

er
s 

 3
.6

(n
) 

(n
) 

(n
) 

(n
) 

(n
) 

(n
) 

(n
) 

(n
) 

(n
) 

–

Ic
on

s 
an

d 
fo

rm
ul

as
 

 3
.6

YE
S 

YE
S 

YE
S 

YE
S 

(y
) 

YE
S 

(n
) 

(y
) 

YE
S 

–

Fo
ot

no
te

s,
 A

pp
ar

at
us

 
 3

.7
YE

S 
YE

S 
YE

S 
YE

S 
(y

) 
YE

S 
(n

) 
(y

) 
YE

S 
–

Fl
oa

ti
ng

 O
bj

ec
ts

 
 3

.8
(y

) 
(y

) 
YE

S 
YE

S 
YE

S 
YE

S 
(y

) (
×6

)
(y

) 
YE

S 
–

Re
f b

y 
fu

ll 
XP

oi
nt

er
 

 3
.9

–
–

N
O

 
N

O
 

N
O

 
YE

S 
YE

S 
N

O
 

N
O

 
YE

S

D
yn

am
ic

 o
pt

ic
. a

pp
ea

ra
nc

e 
 4

.1
(n

) 
(n

) 
no

 
no

 
–

–
YE

S 
YE

S 
(y

) 
–

In
te

ra
ct

iv
e 

Re
ad

in
g 

(IR
) 

 4
.2

YE
S 

(×
9)

YE
S 

(×
9)

(n
) 

(n
) 

(y
) 

–
YE

S 
(n

) 
(n

) 
–

(C
on

td
.)



Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 92 of 98

se
ct

io
n

M
s.

Ty
pe

.
La

T EX
 

Lo
ut

 
D

oc
Bk

TE
I 

H
TM

L 
O

D
-T

 
d2

d_
gp

 
X

M
L

To
ol

 ti
ps

 
 4

.2
N

O
 

N
O

 
–

–
–

–
YE

S 
–

–
–

H
is

to
ri

c 
Ve

rs
io

ns
 

 4
.3

YE
S 

YE
S 

(n
) 

(n
) 

(y
) 

YE
S 

(y
) 

(y
) 

(n
) 

–

Vo
la

ti
le

 V
er

si
on

s/
A

ut
ho

ri
ng

 
Pr

ot
oc

ol
 

 4
.4

YE
S 

YE
S 

(y
) 

(y
) 

(y
) 

YE
S 

(y
) 

YE
S 

(s
rc

) 
(s

rc
)

In
di

v.M
od

ifi
at

io
n 

Ri
gh

ts
 

 4
.4

–
–

N
O

 
N

O
 

(n
) 

(n
) 

(n
) 

N
O

 
(n

) 
(y

)

Sl
id

e 
Sh

ow
 S

up
po

rt
 

 4
.5

(n
) 

(n
) 

YE
S 

(y
) 

(n
) 

(n
) 

(y
) (

×8
)

(n
) 

(n
) 

–

Su
it

ed
 fo

r D
yn

am
ic

 V
is

ua
l A

rt
s 

 4
.6

(y
) 

(y
) 

YE
S 

(y
) 

N
O

 
(n

) 
(y

) (
×8

)
(n

) 
(n

) 
YE

S 
(×

8)

Su
it

ed
 fo

r O
nl

in
e 

In
fo

rm
at

io
n 

Sy
st

em
s 

 4
.7

N
O

 
N

O
 

N
O

 
N

O
 

N
O

 
N

O
 

(y
) 

YE
S 

(n
) 

YE
S



Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 93 of 98

Acknowledgements
Thanks to Peter Pepper, Berlin, for drawing our attention to the dynamic aspects.

Thanks to Kai Stalmann, Berlin, for valuable feedback.

Thanks to the anonymous reviewers who helped to improve the text substantially.

Competing Interests
The authors have no competing interests to declare.

References
Adobe Systems. 1993. Display postscript system — introduction: Perspective for 

software developers. Adobe Developer Technologies.

———. 1999. Postscript language reference. Addison-Wesley. ISBN: 0-201-37922-8.

André, Julie, and Elena Pierazzo. 2013. Le codage en TEI des brouillons de Proust: 

vers l’édition numérique. Genesis (Manuscrits - Recherche - Invention) 36 (Apr.): 

155–161. DOI: https://doi.org/10.4000/genesis.1159

Bennett, Rick, Christina Hengel-Dittrich, et al. 2007. Linking die Deutsche 

Bibliothek and Library of Congress name authority files. International cataloguing 

and bibliographic control 36 (1): 12–19.

Bingham, Harvey. 2000. Cals table model history. https://web.archive.org/

web/20110402011307/http://users.rcn.com/hwbingham/tables/calstbhs.htm 

(accessed Oct. 11, 2019).

Boyer, John. 2001. Canonical XML 1.0. Recommendation. W3C. https://www.

w3.org/TR/xml-c14n (accessed Oct. 11, 2019).

Branden, Ron Van den, Melissa Terras, and Edward Vanhoutte. 2008. TEI 

by Example. Royal Academy of Dutch Language/Literature, etc. http://

teibyexample.org (accessed Jan. 11, 2016).

Bray, Tim, Jean Paoli, et al. 2006. Extensible Markup Language (XML) 1.1 

(Second Edition). Recommendation. W3C. http://www.w3.org/TR/2006/REC-

xml11-20060816 (accessed Oct. 11, 2019).

Burnard, Lou, and C. M. Sperberg-McQueen. 2012. Tei lite: encoding for interchange: 

an introduction to the tei: Final revised ediition for the tei p5. Text Encoding 

https://doi.org/10.4000/genesis.1159
https://web.archive.org/web/20110402011307/http://users.rcn.com/hwbingham/tables/calstbhs.htm
https://web.archive.org/web/20110402011307/http://users.rcn.com/hwbingham/tables/calstbhs.htm
https://www.w3.org/TR/xml-c14n
https://www.w3.org/TR/xml-c14n
http://teibyexample.org
http://teibyexample.org
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2006/REC-xml11-20060816


Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 94 of 98

Initiative Consortium. http://www.tei-c.org/Vault/P4/Lite/teiu5_en.html 

(accessed Oct. 11, 1019).

Buzzetti, Dino. 2009. Digital editions and text processing. In Text editing, print, 

and the digital world. Ashgate, UK. ISBN: 978-0-7546-7307-1, https://www.

researchgate.net/publication/290227303_Digital_editions_and_text_

processing (accessed Oct. 11, 2019).

Dailey, David. 2010. An svg primer for today’s browsers: Chapter iv - smil animations 

embedded in svg. W3C. http://www.w3.org/Graphics/SVG/IG/resources/

svgprimer.html#SMIL_animations (accessed Oct. 11, 2019).

DocBook-Team. 2014. Docbook 5.1 specification, rnc format. DocBook.org.

Durusau, Patrick, and Michael Brauer, eds. 2011. Open document format for office 

applications (opendocument) version 1.2. OASIS. http://docs.oasis-open.org/

office/v1.2/os/OpenDocument-v1.2-os.html (accessed Nov. 20, 2019).

Geschke, Chuck, and John Warnock, eds. 2006. Pdf reference. Six edition. Adobe 

Systems Inc.

Goethe, J. W. v. 1986. Gesammelte Werke, Hamburger Ausgabe. C.H.Beck. ISBN: 

3-423-19038-6.

Goossens, Michel, and Frank Mittelbach. 2004. The LATEX companion. Second. 

Addison-Wesley. ISBN: 0-201-36299-6.

Huitfeldt, Claus. 1994. Multi-dimensional texts in a one-dimensional medium. 

Computers and the Humanities 28: 235–241. DOI: https://doi.org/10.1007/

BF01830270

Huitfeldt, Claus, Fabio Vitali, and Silvio Peroni. 2012. Documents as timed 

abstract objects. In Proceedings of Balisage: The markup conference 2012. DOI: 

https://doi.org/10.4242/BalisageVol8.Huitfeldt01

IFLA Study Group on the Functional Requirements for Bibliographic 

Records. 1998. Functional requirements for bibliographic records. FLA Series on 

Bibliographic Control 19. München: K.G. Saur Verlag.

http://www.tei-c.org/Vault/P4/Lite/teiu5_en.html
https://www.researchgate.net/publication/290227303_Digital_editions_and_text_processing
https://www.researchgate.net/publication/290227303_Digital_editions_and_text_processing
https://www.researchgate.net/publication/290227303_Digital_editions_and_text_processing
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#SMIL_animations
http://www.w3.org/Graphics/SVG/IG/resources/svgprimer.html#SMIL_animations
mailto:DocBook.org
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html
https://doi.org/10.1007/BF01830270
https://doi.org/10.1007/BF01830270
https://doi.org/10.4242/BalisageVol8.Huitfeldt01


Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 95 of 98

Ingarden, Roman. 1960. Das literarische Kunstwerk. Max Niemeyer.

———. 1962. Untersuchungen zur Ontologie der Künste. Max Niemeyer.

Jacob, Pierre. 2019. Intentionality. In The Stanford encyclopedia of philosophy, 

Spring 2019, ed. Edward N. Zalta. Metaphysics Research Lab, Stanford University. 

https://plato.stanford.edu/archives/spr2019/entries/intentionality/ (accessed 

Oct. 11, 2019).

Jannidis, Fotis. 1997. TEI in der Praxis. In Jahrbuch für computerphilologie. München: 

Computerphilologie Uni München. http://computerphilologie.uni-muenchen.

de/praxis/teiprax.html (accessed Oct. 11, 2019).

Kalvesmaki, Joel. 2014. Canonical references in electronic texts: Rationale and best 

practices. Digital Humanities Quarterly (Boston VA) 8 (2).

Kingston, Jeffrey H. 1992. The design and implementation of the lout document 

formatting language. Software—Practice & Experience 23 (9). DOI: https://doi.

org/10.1002/spe.4380230906

———. 2000a. An expert’s guide to the lout document formatting system.

———. 2000b. The Lout homepage. http://savannah.nongnu.org/projects/lout 

(accessed Oct. 11, 2019).

———. 2013. A user’s guide to the lout document formatting system (3.40):Version 

3.40. http://download.savannah.gnu.org/releases/lout/lout-3.40-user.ps.gz 

(accessed Oct. 11, 2019).

Kittelmann, Jana, and Christoph Wernhard. 2016. Knowledge-based support 

for scholarly editing and text processing. In Dhd 2016 – digital humanities im 

deutschsprachigen raum: modellierung – vernetzung – visualisierung. die digital 

humanities als fächerübergreifendes forschungsparadigma. konferenzabstracts, 

178–181. Duisburg: nisaba verlag. http://arxiv.org/pdf/1908.11135 (accessed 

Oct. 13, 2019).

Lamport, Leslie. 1986. Latex user’s guide and document reference manual. Reading, 

Massachusetts: Addison-Wesley Publishing Company.

https://plato.stanford.edu/archives/spr2019/entries/intentionality/
http://computerphilologie.uni-muenchen.de/praxis/teiprax.html
http://computerphilologie.uni-muenchen.de/praxis/teiprax.html
https://doi.org/10.1002/spe.4380230906
https://doi.org/10.1002/spe.4380230906
http://savannah.nongnu.org/projects/lout
http://download.savannah.gnu.org/releases/lout/lout-3.40-user.ps.gz
http://arxiv.org/pdf/1908.11135


Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 96 of 98

Lepper, Markus. 2015. Gustav Mahler, Dritte Sinfonie, Erste Abtheilung: Eine 

Annäherung. senzatempo. http://senzatempo.de/mahler/gmahler_sinf3_satz1.

html (accessed Oct. 11, 2019).

Lepper, Markus, and Baltasar Trancón y Widemann. 2010. D2d gp generated 

user doc. http://www.bandm.eu/metatools/docs/usage/d2d_documentation_

basic.deliverables_user_en/index.html (accessed Oct. 11, 2019).

———. 2013a. Example instances of the TScore projekt infrastructure. http://

markuslepper.eu/sempart/tscoreInstances.html (accessed Oct. 11, 2019).

———. 2013b. Tscore: Making computers and humans talk about time. In Proc. 

keod 2013, 5th intl. conf. on knowledge engineering and ontology development, 

176–183. Portugal: instincc, scitePress. ISBN: 978-989-8565-81-5, https://www.

researchgate.net/publication/262057663_tScore_Making_Computers_and_

Humans_Talk_About_Time (accessed Oct. 11, 2019).

———. 2018. Rewriting for parametrization. In Tagungsband des 35ten jahrestreffens 

der gi-fachgruppe programmiersprachen und rechenkonzepte, 51–67. Vol. 482. 

IFI Reports. University of Oslo. ISBN: 978-82-7368-447-9, http://urn.nb.no/

URN:NBN:no-65294.

Lepper, Markus, Baltasar Trancón y Widemann, and Jacob Wieland. 2001. 

Minimze mark-up ! – Natural writing should guide the design of textual modeling 

frontends. In Conceptual modeling — er2001. Vol. 2224. LNCS. Springer. http://

markuslepper.eu/papers/er2001.pdf (accessed Oct. 11, 2019). DOI: https://doi.

org/10.1007/3-540-45581-7_34

Leunen, Mary-Claire van. 1992. A handook for scholars. Oxford.

Nilsen, Per. 2004. The vault – The definitive guide to the musical world of Prince. 

Nilsen Publishing. ISBN: 91-631-5482-X.

Pierazzo, Elena. 2015. Digital scholarly editing : Theories, models and methods. 

Routledge. ISBN: 1-472-41211-7. DOI: https://doi.org/10.4324/9781315577227

Renear, Allen H., and Karen M. Wickett. 2009. Documents cannot be edited. In 

Proceedings of balisage: the markup conference 2009. Vol. 3. Balisage Series on 

Markup Technologies. DOI: https://doi.org/10.4242/BalisageVol3.Renear01

http://senzatempo.de/mahler/gmahler_sinf3_satz1.html
http://senzatempo.de/mahler/gmahler_sinf3_satz1.html
http://www.bandm.eu/metatools/docs/usage/d2d_documentation_basic.deliverables_user_en/index.html
http://www.bandm.eu/metatools/docs/usage/d2d_documentation_basic.deliverables_user_en/index.html
http://markuslepper.eu/sempart/tscoreInstances.html
http://markuslepper.eu/sempart/tscoreInstances.html
https://www.researchgate.net/publication/262057663_tScore_Making_Computers_and_Humans_Talk_About_Time
https://www.researchgate.net/publication/262057663_tScore_Making_Computers_and_Humans_Talk_About_Time
https://www.researchgate.net/publication/262057663_tScore_Making_Computers_and_Humans_Talk_About_Time
http://urn.nb.no/URN:NBN:no-65294
http://urn.nb.no/URN:NBN:no-65294
http://markuslepper.eu/papers/er2001.pdf
http://markuslepper.eu/papers/er2001.pdf
https://doi.org/10.1007/3-540-45581-7_34
https://doi.org/10.1007/3-540-45581-7_34
https://doi.org/10.4324/9781315577227
https://doi.org/10.4242/BalisageVol3.Renear01


Lepper and Trancón y Widemann: Technical Topologies of Texts Art. 1, page 97 of 98

———. 2010. There are no documents. In Proceedings of balisage: The markup  

conference 2010. Vol. 5. Balisage Series on Markup Technologies. DOI: https://

doi.org/10.4242/BalisageVol5.Renear01

Rosenmann, Mauricio. 1995. Chile o el p/fisco sauer (aus der sinfonía para nombres 

solos). Pfau Verlag.

———. 1996. Formicación. Pfau Verlag.

Siemens, Ray, Teresa Dobson, et al. 2011. Hci-book? perspectives on e-book 

research, 2006–2008 (foundational to implementing new knowledge 

environments). Papers of the Bibliographical Society of Canada/Cahiers de la 

Société bibliographique du Canada 49 (1).

Tantau, Till. 2015. TikZ and PGF. http://mirrors.ctan.org/graphics/pgf/base/doc/

pgfmanual.pdf (accessed Oct. 11, 2019).

Tantau, Till, Joseph Wright, and Vedran Miletić. 2011. The beamer class – User 

guide for version 3.36. ctan.

Taupin, Daniel, Ross Mitchell, and Andreas Egler. 2002. MusixTEX — Using TEX 

to write polyphonic or instrumental music. http://mirrors.ctan.org/macros/

musixtex/doc/musixdoc.pdf (accessed Oct. 11, 2019).

TEI-Consortium. 2013. Getting started using TEI. http://tei.oucs.ox.ac.uk/

GettingStarted/html/ (accessed Oct. 11, 2019).

———. 2016. TEI P5: Guidelines for Electronic Text Encoding and Interchange. http://

www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf (accessed Oct. 11, 

2019).

Trancón y Widemann, Baltasar, and Markus Lepper. 2010. The bandm meta-tools 

user documentation. http://bandm.eu/metatools/docs/usage/introduction.

html (accessed Oct. 11, 2019).

———. 2019. Simple and effective relation-based approaches to xpath and xslt 

type checking. In Tagungsband des 36ten jahrestreffens der gi-fachgruppe 

programmiersprachen und rechenkonzepte, 36–46. Vol. 488. IFI Reports. Univer-

sity of Oslo. ISBN: 978-82-7368-453-0, http://urn.nb.no/URN:NBN:no-75603 

(accessed Dec. 10, 2019).

https://doi.org/10.4242/BalisageVol5.Renear01
https://doi.org/10.4242/BalisageVol5.Renear01
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/macros/musixtex/doc/musixdoc.pdf
http://mirrors.ctan.org/macros/musixtex/doc/musixdoc.pdf
http://tei.oucs.ox.ac.uk/GettingStarted/html/
http://tei.oucs.ox.ac.uk/GettingStarted/html/
http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
http://www.tei-c.org/release/doc/tei-p5-doc/en/Guidelines.pdf
http://bandm.eu/metatools/docs/usage/introduction.html
http://bandm.eu/metatools/docs/usage/introduction.html
http://urn.nb.no/URN:NBN:no-75603


Lepper and Trancón y Widemann: Technical Topologies of TextsArt. 1, page 98 of 98

Walsh, Norman. 1999. Xml exchange table model document type definition. OASIS. 

https://www.oasis-open.org/specs/tm9901.html (accessed Oct. 11, 2019).

———. 2010. Docbook 5: The definitive guide. O’Reilly Associates. ISBN: 0-596-80502-0.

W3C. 2002. An xhtml + mathml + svg profile: W3C working draft. W3C. http://www.

w3.org/TR/XHTMLplusMathMLplusSVG/ (accessed Nov. 20, 2019).

———. 2008. Synchronized multimedia integration language (smil 3.0). W3C. http://

www.w3.org/TR/2008/REC-SMIL3-20081201/ (accessed Oct. 11, 2019).

———. 2011. Scalable vector graphics (svg) 1.1. 2nd. W3C, W3C. http://www.w3.org/

TR/SVG11/ (accessed Oct. 11, 2019).

———. 2014. Mathematical markup language (mathml) version 3.0. 2nd. W3C, W3C. 

http://www.w3.org/TR/MathML3/ (accessed Oct. 11, 2019).

W3C HTML Working Group. 2002. Xhtml 1.0 The extensible hypertext markup 

language: A reformulation of html 4 in xml 1.0. 2nd ed. W3C Recommendation. W3C 

HTML Working Group. http://www.w3.org/TR/2002/REC-xhtml1-20020801 

(accessed Oct. 11, 2019).

———. 2011. Cascading style sheets level 2 revision 1 (css 2.1) specification: W3C 

recommendation. W3C HTML Working Group. http://www.w3.org/TR/CSS2 

(accessed Oct. 11, 2019).

———. 2011. Css text level 3. W3C HTML Working Group. http://www.w3.org/

TR/2011/WD-css3-text-20110901 (accessed Nov. 20, 2019).

How to cite this article: Lepper, Markus, and Baltasar Trancón y Widemann. 2021. 
“Technical Topologies of Texts.” Digital Studies/Le champ numérique 11(1): 1, pp. 1–98. 
DOI: https://doi.org/10.16995/dscn.313

Submitted: 12 July 2018   Accepted: 14 January 2020   Published: 13 April 2021

Copyright: © 2021 The Author(s). This is an open-access article distributed under the 
terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.
 

               OPEN ACCESS Digital Studies/Le champ numérique is a peer-reviewed open 
access journal published by Open Library of Humanities.

https://www.oasis-open.org/specs/tm9901.html
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/
http://www.w3.org/TR/XHTMLplusMathMLplusSVG/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/2002/REC-xhtml1-20020801
http://www.w3.org/TR/CSS2
http://www.w3.org/TR/2011/WD-css3-text-20110901
http://www.w3.org/TR/2011/WD-css3-text-20110901
https://doi.org/10.16995/dscn.313
http://creativecommons.org/licenses/by/4.0/

	1 Introduction 
	1.1 Intention of this Article 
	1.2 Structure of this Article 
	1.3 Fundamental Definitions 
	1.4 Analytical Tools From Mathematics and Compiler Construction 
	1.5 Compared Text Modelling Frameworks (TMFs) 
	1.6 Substance and Identity, Revisited 
	1.7 Exclusion of Optical Appearance 

	2 General Properties of TMFs 
	2.1 Multi-Layers and Multi-Authors Texts 
	2.2 Meant Model vs. Written Source Text (SrcTS) 
	2.3 Source Model Coupling (SrcMC) 
	2.4 Compound Source Strategy (CmpSS) 
	2.5 Separation of Concerns (SoC), Minimality, Reusability 
	2.6 Compositionality 
	2.7 Tree Structure and Free and Bound Segments 

	3 Text Models and Their Components, As Realised in -Different TMFs 
	3.1 Explicit Hierarchical Structure and Sections 
	3.2 Implicit Structure and Paragraphs 
	3.2.1 Two-dimensional Rendering of Margin Paragraphs 

	3.3 Two-Dimensional Constructs 
	3.3.1 Lists 
	3.3.2 Tables 
	3.3.3 Diagrams, Figures and Pictures 

	3.4 Segments of Character Data, Highlighting 
	3.4.1 Multi-Lingualism 

	3.5 Entities, Definitions and References 
	3.6 Formalised Contents, Icons 
	3.7 Annotations, Footnotes, Apparatus 
	3.8 Floats and Figures 
	3.9 References Into the Text 
	3.10 Compositionality and Page Breaks 

	4 Text and Time 
	4.1 Dynamic Physical Appearance (DPA) of a Text 
	4.1.1 Dedicated Hardware for Dynamic Text 

	4.2 Interactive Reading (IR)/Computer-Aided Reading (CAR) 
	4.3 Historic Versions of the Same Text Document 
	4.4 Volatile Versions When Creating a Text Document 
	4.5 Animated Text in Slides and Presentations 
	4.6 Animated Text in Visual Arts 
	4.7 Online Information Systems 

	5 Comprehensive Table of the Characteristics of the Different Text Modelling Frameworks 
	Acknowledgements 
	Competing Interests 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

