
Research
How to Cite: Kiessling, Benjamin, Gennady Kurin, Matthew Miller, and Kader
Smail. 2021. “Advances and Limitations in Open Source Arabic-Script OCR:
A Case Study.” Digital Studies/Le champ numérique 11(1): 8, pp. 1–30.
DOI: https://doi.org/10.16995/dscn.8094
Published: 03 November 2021

Peer Review:
This is a peer-reviewed article in Digital Studies/Le champ numérique, a journal published by the Open
Library of Humanities.

Copyright:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative
 Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use,
 distribution, and reproduction in any medium, provided the original author and source are credited.
See http://creativecommons.org/licenses/by/4.0/.

Open Access:
Digital Studies/Le champ numérique is a peer-reviewed open access journal.

Digital Preservation:
The Open Library of Humanities and all its journals are digitally preserved in the CLOCKSS scholarly
archive service.

https://doi.org/10.16995/dscn.8094
http://creativecommons.org/licenses/by/4.0/

Kiessling, Benjamin, et al. 2021. “Advances and Limitations
in Open Source Arabic-Script OCR: A Case Study” Digital
Studies/Le champ numérique 11(1): 8, pp. 1–30. DOI:
https://doi.org/10.16995/dscn.8094

RESEARCH

Advances and Limitations in Open Source
Arabic-Script OCR: A Case Study
Benjamin Kiessling1, Gennady Kurin2, Matthew Miller2 and
Kader Smail2
1 Université Paris Sciences et Lettres, FR
2 Faculty of Oriental Studies, University of Oxford, UK
Corresponding author: Matthew Miller (mtmiller@umd.edu)

This work presents an accuracy study of the open source OCR engine,
Kraken, on the leading Arabic scholarly journal, al-Abhath. In contrast with
other commercially available OCR engines, Kraken is shown to be capable of
producing highly accurate Arabic-script OCR. The study also assesses the
relative accuracy of typeface-specific and generalized models on the al-Abhath
data and provides a microanalysis of the “error instances” and the contextual
features that may have contributed to OCR misrecognition. Building on
this analysis, the paper argues that Arabic-script OCR can be significantly
improved through (1) a more systematic approach to training data production,
and (2) the development of key technological components, especially multi-
language models and improved line segmentation and layout analysis.

Keywords: Optical Character Recognition; OCR; Persian; Arabic; Arabic-
script languages; typography

Cet article présente une étude d’exactitude du moteur ROC open source,
Krakan, sur la revue académique arabe de premier rang, al-Abhath.
Contrairement à d’autres moteurs ROC disponibles sur le marché, Kraken se
révèle être capable de produire de la ROC extrêmement exacte de l’écriture
arabe. L’étude évalue aussi l’exactitude relative des modèles spécifiquement
configurés à des polices et celle des modèles généralisés sur les données
d’al-Abhath et fournit une microanalyse des « occurrences d’erreurs », ainsi
qu’une microanalyse des éléments contextuels qui pourraient avoir contribué
à la méreconnaissance ROC. S’appuyant sur cette analyse, cet article fait
valoir que la ROC de l’écriture arabe peut être considérablement améliorée
grâce à (1) une approche plus systématique d’entraînement de la production
de données et (2) grâce au développement de composants technologiques
fondamentaux, notammentl’amélioration des modèles multilingues, de la
segmentation de ligne et de l’analyse de la mise en page.

Mots-clés: Reconnaissance optique de caractères; ROC; persan; arabe;
langues utilisant l’alphabet arabe; typographie

https://doi.org/10.16995/dscn.8094
mailto:mtmiller@umd.edu

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 2 of 30

Introduction
In late 2017 JSTOR initiated a collaboration with the Open Islamicate Texts Initiative

(OpenITI) to run an Optical Character Recognition (OCR) pilot for the JSTOR Arabic

digitization feasibility study (funded through a generous grant by the National

Endowment for the Humanities).1 The problem that JSTOR had encountered in

their feasibility study was the problem that has long plagued efforts of scholars

and librarians to digitize Arabic, Persian, Urdu, and Ottoman Turkish print

documents: Arabic-script OCR programs produce notoriously poor results, despite

the optimistic claims of some of their marketing materials (Alghamdi and Teahan

2017). Mansoor Alghamdi and William Teahan open their 2017 study by noting

that “although handwritten script is significantly more challenging than printed

Arabic text for OCR, Arabic printed text OCR still poses significant challenges.” After

evaluating Sakhr, Finereader, RDI Clever Page, and Tesseract (Version 3)—the main

options for Arabic-script OCR—on Arabic print works they conclude that “all the

evaluated Arabic OCR systems have low performance accuracy rates, below 75 per

cent, which means that the time which would take to manually correct the OCR

output would be prohibitive.” These results are consonant with the authors’ own

experience using these OCR engines and those of our colleagues in the field of

Islamicate Studies. In addition to these programs’ lackluster performance, they also

are not ideal systems for academic users for other reasons as well—for example,

several are prohibitively expensive (for the average academic) and they offer little

out of the box trainability (i.e., they come only with a generic OCR model and they

cannot be trained to recognize new typefaces). With these problems in mind, in

2016 OpenITI began working on the development of open source OCR tools for

Arabic-script languages (in print form) in collaboration with the computer scientist

 1 OpenITI is a multi-institutional initiative that is focused on building digital infrastructure for the

computational study of the texts of the Islamicate world. It is currently led by Dr. Matthew Thomas

Miller (Roshan Institute for Persian Studies, University of Maryland, College Park), Dr. Sarah Bowen

Savant (Aga Khan University, London), and Dr. Maxim Romanov (University of Vienna). Benjamin

Kiessling (University of Leipzig/Université PSL) is one of OpenITI’s primary computer science

collaborators and he served as the technical lead for the OpenITI JSTOR OCR pilot. More information

on JSTOR’s NEH-funded project can be found in Kiplinger and Ray 2019.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 3 of 30

Benjamin Kiessling. To date our work has primarily focused on Arabic-script OCR

for print documents since handwritten text recognition (HTR) for Arabic-script

manuscripts presents a series of additional issues (e.g., even more complex line

segmentation and page layout analysis problems, a dizzying array of different script

styles and scribal hands). However, we have begun preliminary experiments on

Persian and Arabic manuscripts with some promising initial results using distantly

supervised methods of training data production and the new line segmentation

methods developed by Kiessling (Kiessling et al. 2019). (See also the experiments on

HTR for Arabic manuscripts led by the British Library in Clausner et al. 2018; Keinan-

Schoonbaert 2019; Keinan-Schoonbaert 2020). OpenITI’s first OCR study with the

new open source OCR engine, Kraken, developed by Kiessling, demonstrated that

it was capable of achieving Arabic script-only accuracy rates >97.5% with as little

as 800–1,000 lines of training data for that document’s typeface (Kiessling et al.

2017). (Training data, in the context of OCR, consists of pairs of scans of individual

lines of text with their digital transcription.) OpenITI has also replicated these

high accuracy rates on Persian texts, with Perso-Arabic script-only accuracy rates

ranging from 96.3% to 98.62% with typeface-specific models. (This work has not

been published yet, but the full CER reports for these tests can be viewed in Open

Islamic Texts Initiative 2021b, “OCR_GS_Data”.) In this work, we present the results

of our OCR study done in collaboration with JSTOR on the al-Abhath Arabic journal

(arguably the most important Arabic language scholarly journal in the Middle

East). In contrast with many OCR accuracy reports, in this study we performed

both detailed manual and automatic Character Error Rate (CER) accuracy checks,

which enabled us to develop a much more fine-grained understanding of where the

Kraken OCR engine was failing to properly transcribe the Arabic text. These results

confirm Kraken’s ability to produce highly accurate Arabic-script OCR, but they also

provide new insights into the importance of systematic training data production,

the relative accuracy of typeface-specific and generalized models, and the key

technological improvements needed for improved Arabic-script OCR output.

Section two reviews the open-source software used in this study before the

JSTOR Arabic OCR pilot and accuracy study are described in sections three and

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 4 of 30

four, respectively. Section five contains our recommendations for the necessary

technological and data improvements needed to improve Arabic OCR in the future.

OpenITI OCR software: Kraken
Kraken is an open-source OCR engine that was developed by Benjamin Kiessling. It

utilizes a segmentationless sequence-to-sequence approach (Graves et al. 2006) with a

hybrid convolutional and recurrent neural network to perform character recognition

(Kiessling 2019) which obviates the need for character-level segmentation—i.e., the

neural network responsible for text extraction from image data recognizes whole

lines of text without resorting to smaller subunits like words or characters which can

be difficult to accurately compute for languages written in connected script.

As an initial preprocessing step page images are converted into black and white

through a process called binarization. Layout analysis, i.e. the detection of lines for

subsequent steps, is then performed on this binarized image with an algorithm

based on traditional computer vision methods. In a final step, the previously

detected rectangular lines are fed into the neural network for character recognition.

(More on Kraken’s technical details can be found in Kiessling, n.d.) The benefit of

eliminating fine-grained segmentation in comparison to older character segmenting

systems such as tesseract 3, Sakhr, and most likely Abbyy FineReader (as a proprietary

software the exact nature of the classifier is unknown) can be seen not only during

recognition but also in the streamlined production process of training data for

adaptation of the OCR system to new scripts and typefaces. With character-based

systems annotators have to manually locate and transcribe single characters while

Kraken is trained on full line transcriptions which are faster to annotate and verify,

especially in the case of connected scripts.

The OpenITI JSTOR OCR pilot
OpenITI began the JSTOR OCR pilot by performing a randomized review of the Arabic

typefaces used in each year of the al-Abhath journal. The page images of the journal

were obtained from the Arabic and Middle Eastern Electronic Library (Project AMEEL)

of Yale University Library. It was determined that there were two basic typefaces in

the al-Abhath journal archive, with the first typeface being much more prevalent than

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 5 of 30

the second (typeface #1: volumes 1–33, 36–39, 48–50; typeface #2: volumes 34–35,

40–47). Examples of these two typefaces can be seen in Figures 1–2 (for comparison

sake, the last word in both lines—on the left of the page—is the same word).

Both typefaces had some internal font differences and other minor character/

script variations (e.g., patterns of use of alef hamza, slight shifts in placement of dots,

slight differences in the degree of curvature of lines in a couple of instances, and

minor ligature differences). This intra-typeface variation was especially apparent in

typeface #1, which had a long run as al-Abhath’s typeface. To address this issue it

was decided that the best approach would be to produce approximately 5,000 lines

of training data for the first typeface and 2,000 lines of training data for the second

typeface.

After a randomized sample of the pages representing each typeface were

selected, research assistants working with the OpenITI team produced the training

data for these 7,000 lines using CorpusBuilder 1.0—a new OCR postcorrection

platform produced through the collaboration of OpenITI and Harvard Law School’s

SHARIAsource project. (For more on CorpusBuilder 1.0, please see Open Islamicate

Texts Initiative, “CorpusBuilder 1.0,” 2021a) After these 7,000 lines of training data

were double checked for accuracy, a final spot review was conducted. This “gold

standard” data was then utilized for model production and OCR. (This training

data is available for reuse and can be found in Open Islamic Texts Initiative (2021b,

“OCR_GS_Data”)

The first round of OCR accuracy tests was performed by an outside contractor,

which JSTOR hired to conduct a ten-page manual accuracy comparison between the

Kraken output and the corresponding output for ABBYY (see Table 1).

Figure 1: Typeface #1 Sample.

Figure 2: Typeface #2 Sample.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 6 of 30

With the exception of page #2, OpenITI performed substantially better on

the pages the contractor reviewed, achieving >99% accuracy in 4/10 pages, >97%

accuracy in 6/10 pages, >95.8% in 8/10 pages. The exceptions to these generally

impressive numbers were pages #2 and #8 in which OpenITI only achieved

27.027% and 93.539% respectively. While the contractor’s review was quite useful

and generally confirmed OpenITI’s results from its previous work (i.e., that Kraken

achieves significantly higher accuracy rates on Arabic texts than the commercial OCR

solutions for Arabic), the OpenITI team discovered upon further review that there

were several problems with the contractor’s study. (For OpenITI’s previous study on

Kraken, please see: Kiessling et al. 2017.)

First, Page #2—by far the most disappointing result—is a highly atypical page of

al-Abhath data. It only contains 37 characters total and much of these are contained

in a large header that is in a highly calligraphic script and is heavily vocalized (see

Figure 3). It is noteworthy that Abbyy performed better on this script, but this page

is an extreme outlier in the data.

Table 1: Contractor’s Accuracy Comparison of Abbyy and OpenITI (Kraken) OCR
Results.

Page (Tiff) Number Total
Number of
characters

Abbyy
Character

Errors

OpenITI
Character

Errors

Abbyy
Accuracy

Rate

OpenITI
Accuracy

Rate
Page #1 (00010004_
187997831.tif)

1230 270 38 78.049% 96.911%

Page #2 (00010004_
187997832.tif)

37 15 27 59.459% 27.027%

Page #3 (00010031_
187998459.tif)

3182 355 23 88.843% 99.277%

Page #4 (00010063_
187999338.tif)

3157 327 29 89.642% 99.081%

Page #5 (00010129_
188001031.tif)

3222 378 16 88.268% 99.503%

Page #6 (00010012.tif) 3259 326 75 89.997% 97.699%

Page #7 (00010030.tif) 2503 230 17 90.811% 99.321%

Page #8 (00010126.tif) 2631 252 170 90.422% 93.539%

Page #9 (00010127.tif) 2294 223 35 90.279% 98.474%

Page #10 (00010132.tif) 2296 243 96 89.416% 95.819%

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 7 of 30

The second issue that we identified in the contractor’s review was that they were

marking certain differences between the original scans and OCR output as errors

which were not true errors, and, in some cases, even marked some characters in

the OCR output as errors that were not errors at all. For example, in the former

case, they marked all numbers as errors in the OpenITI OCR output which were

rendered as western Arabic numerals (e.g., 1, 2, 3) instead of as eastern Arabic

numerals (e.g., ٣ ,٢ ,١)—a problem that was particularly prevalent on page #8 (thus

at least partially responsible for OpenITI’s comparatively lower accuracy rate on

page #8). The OCR rendered them as western Arabic numerals instead of eastern

Arabic numerals because we decided to merge western and eastern Arabic numerals

into their universal numerical values in the OCR process and then represent that

value in western Arabic numerals in the OCR output. (This practice of collapsing

Figure 3: Header.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 8 of 30

numeric values to their universal numerical value can be done for multiple reasons,

but, in this particular case, one of our primary motivating factors was the fact that

there were inconsistencies in the transcription practice of numbers in the training

data.) These differences, thus, are not true errors—their numerical value is correct—

and their representation can be changed to eastern Arabic numerals if that is what

users prefer. Another similar issue was discovered in the contractor’s treatment

of diacritics: they routinely marked correctly rendered words as incorrect if the

word’s original diacritics were not included in the OCR output. However, again, this

difference in the original text and the OCR output is not a true error in transcription

because OpenITI has followed the practice (with one exception discussed further

below) of not reproducing vocalization in its training data (for reasons elaborated

below) and thus the fact that vocalization were not rendered in OpenITI’s OCR output

is actually a sign that the Kraken OCR engine was functioning correctly. (This training

data generation practice can be changed if the users desire, and given the results in

OpenITI’s larger accuracy study described below, this change may be advisable in the

future, depending on the requirements of each individual user’s use case.)

These problems in the contractor’s approach to error designation led them

to calculate lower accuracy estimates for OpenITI OCR output than it achieved

in actuality—a problem that was particularly accentuated in the case of page #8,

which contained a larger amount of numbers than the other pages the contractor

reviewed. Due to the problems discovered in the contractor’s initial accuracy study,

JSTOR requested that OpenITI perform a more detailed accuracy assessment on

approximately fifty pages.

OpenITI accuracy study
The OpenITI team began by generating automatic character error rate (CER) reports

for the al-Abhath data (see Table 2 for full results). In the first round of experiments,

we built two different models—typeface model #1 and #2—based on the two different

sets of training data produced for the two typefaces that we identified in the full run

of al-Abhath. After extracting 1,000 lines of training data from the original 5,000

lines for typeface #1 and 700 lines of training data from the original 2,000 lines for

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 9 of 30

typeface #2 to use as validation sets, we then trained the model on the remaining

lines and tested these models’ accuracy using the validation sets. This method of

isolating a fixed number of lines of the training data as a validation set for automatic

accuracy testing is a standard procedure when evaluating machine learning models.

These accuracy results can be found in rows 2–3 in Table 2. These typeface-specific

models were the ones used to produce the OCR output that was transferred to JSTOR

and that the contractor reviewed for their accuracy study.

In the time between the delivery of the al-Abhath OCR output to JSTOR and

OpenITI’s manual accuracy study (discussed below), we began developing a

generalized Arabic model from all of the training data that OpenITI has produced

over the last year two years—circa 15,000 lines. (All of this gold standard training data

can be found in Open Islamic Texts Initiative 2021b, “OCR_GS_Data.”) Generalized

OCR models incorporate character features from all of the typefaces represented in

the data upon which it is trained and therefore can often achieve higher levels of

accuracy on a broader range of typefaces. We decided to test this model on all of

the al-Abhath data to determine if total OCR accuracy could be improved and, if so,

by how much. The results, shown in row #4 of Table 2, were impressive. For this

accuracy assessment, 2,096 lines of the 7,000 lines of training data were isolated as

Table 2: Overview of OCR accuracy rates (drawn from character error rate (CER)
reports).

Model Total
Character
Accuracy

Arabic
Script Only
Accuracy

Common
Character
Accuracy*

Inherited
Character

Accuracy**

Typeface #1 Model 95.96% 97.56% 96.91% 79.67%

Typeface #2 Model 94.84% 97.11% 94.16% 85.18%

Generalized Model 97.41% 98.46% 96.36% 89.44%

* “Common characters” are characters shared by multiple scripts, primarily punctuation and
other signs and symbols. In Arabic script, the kashīda or tatwīl (elongation character) is
included in the common script class.

** “Inherited characters” are characters, such as vocalization, that can be used on multiple
languages and they only come to be defined in reference to the character with which they
are combined (i.e., they “inherit” the script of the base character with which it is used).

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 10 of 30

a validation set. The generalized model’s total character accuracy rate was 97.41%—a

2.57% improvement over the typeface #2-only model (i.e., a ~50% improvement

rate) and 1.45% improvement over the typeface #1-only model—and its Arabic script-

only accuracy went up to a respectable 98.46%. The generalized model performed

better than the typeface-specific models in all categories, but its most significant

gains were in the category of “inherited” characters.

According to the CER reports, the most significant source of errors in both the

typeface #2 model and the generalized model were whitespace (spacing) errors and

the Arabic vocalization marker, fatḥa tanwīn (unicode codepoint: Arabic fatḥatan). In

the case of the typeface #1 model, whitespace errors were again the most significant

source of errors, followed by kāf (ك), yā’ (ي), and then fatḥa tanwīn errors. The hamza

above (ء) character ranks as the seventh most common error in typeface #1 model

and fifth in typeface #2 model. The mīm (م) character also is a common error in both

the typeface #1 and #2 models, ranking as the sixth and fifth most common error in

their CER reports respectively.

Concurrent with the generation of CER reports, the OpenITI team began a far

more expansive manual review of fifty—randomly selected—pages of the original

OCR output produced by the typeface #1 and typeface #2-specific models. Each

of these fifty pages were reviewed and then their error reports were collated into

a master list of 1,096 total error instances. We use the term “error instance” here

to highlight the fact that we are not exclusively recording individual, one-to-one

character errors, but instances in the text in which one or more characters were read

incorrectly. In most cases, this is a one-to-one character mistranscription, but in some

other cases one character in the original was read as two or more in the OCR output

or multiple characters in the original were read as one or none in the OCR output.

In a few cases—discussed in more detail below—there are whole sections of text that

are severely mistranscribed due to one or another feature in the original text. Finally,

each error instance was examined with an eye towards identifying possible factors in

its adjacent context that may have led to that error and then coded with any of the

following categories that were applicable:

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 11 of 30

1. Poor scan quality: an element in the raw scan is unclear, or extraneous

marks are present.

2. Ligature/atypical letter or dot form: connection between letters or place-

ment of dots is in a less common form.

3. Vocalization: vocalization marks were present in original word.

4. Kashīda/tatwīl (elongation character): error appears in the context of a

word that has been elongated.

5. Header/font alteration: bolded, italicized, or enlarged text.

6. Footnote: error appears in the context of a footnote.

7. Format: atypical format of presentation, e.g., table, list.

8. Hamza: mistranscribed character was a hamza or a hamza was present in

the original word that was mistranscribed.

9. Doubled character: a single letter or number in the original scan was dou-

bled in the OCR output.

10. Missed fatḥa tanwīn: fatḥa tanwīn in the original text was not

 transcribed.

11. Punctuation or other symbol: error was a punctuation mark or other symbol.

12. Non-Arabic language: original text was not Arabic.

13. Numbers: error was a number.

14. Superscript numerals: error was a footnote numeral in the body of the

text.

This list of error codes is a mixture of error types (#8–14) and the most common

recurring contextual features of the errors (#1–7). For categories of the latter type,

it is important to emphasize that the presence of any of these contextual features

near an error in the original text does not necessarily mean that it caused the error.

But their repeated co-occurrence may be related and thus suggest future avenues of

research and/or the need to better address this issue in the process of future training

data production. We should also point out that in the case of some errors none of the

following category codes were applicable, which only means that the reason for their

improper rendering was not immediately evident to the human reviewers.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 12 of 30

We do want to preface our presentation of the results of this manual review

and error coding below with one further cautionary note. Manual evaluations are

both essential and problematic: they provide far more detailed data (i.e., “thick data”)

about the OCR output and where OCR is failing, but they are much more time and

labor intensive (and thus more limited in scope) and subject to human error. The

results presented in Table 3 should be understood in this light. They should be

understood as a snapshot of the human-inferable errors present in the OCR output.

Each error type in Table 3 and possible ways to address it will be discussed in more

detail in separate sections.

Doubled letter
The “doubled letter” error type was the most frequent that we observed in the OCR

output data (see example in Figure 4). (In the images in Figures 4–31 the Arabic text

at the top of the images is the original scan and the text below is the OCR output.)

At first this error was perplexing. However, it was subsequently discovered that

these “doubling” errors were an artifact of the decoding algorithm converting the

Table 3: Error coding for error instances in OpenITI manual OCR output assessment.

Error Code Quantity Identified

Poor scan quality 25

Ligature/atypical letter or dot form 182

Vocalization 90

Kashīda/tatwīl (elongation character) 31

Header/font alteration 113

Footnote 88

Format 14

Hamza 97

Doubled letter 209

Missed fatḥa tanwīn 91

Punctuation or other non-alphanumeric symbols 25

Non-Arabic language 70

Numbers 94

Superscript numerals 26

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 13 of 30

sequence of confidences for each character produced by the neural network into

a series of characters. As the network assigns each character a probability for each

pixel-wide vertical slice of the input line image and printed characters are wider than

a single pixel an algorithm is needed to extract the actual line text from the longer

character probability sequence. Our implementation was based on a thresholding

and merging approach which can cause doubled characters when the network

assigns a probability below the threshold for a character at a vertical slice between

high probability slices for the same character. As a simplified example, assume

the network assigns a probability for character x at 4 vertical slices: (0.9, 0.95, 0.6,

0.9). Decoding with a threshold of 0.5 will result in an intermediate sequence xxxx

that is then merged to x, while selecting a higher threshold of 0.7 will result in a

potentially erroneous character sequence of xx merged from xx_x. This error has

been effectively addressed by switching to a greedy decoding which always uses the

highest probability character at each vertical slice.

Header/Font alteration, footnotes, and superscript
numerals
Errors that occurred in the context of changes in the font (bolded, italicized,

enlarged/decreased text size) represent the largest category of errors in the OCR

output. Their total numbers are not even fully reflected in Table 3 because examples

Figure 4: “Doubled Letter” errors.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 14 of 30

in which whole sections (see examples in Figures 5–6) were severely mistranscribed

were not enumerated (character-by-character) in the error totals of the OpenITI

manual assessment. Such sections were very rare, and in most other cases the OCR

still rendered text with font alterations with a relatively high degree of accuracy, but

font alterations do seem to increase error rates. One of the most common examples

of this issue was observed in text headers (including both section headers and

chapter titles), which were typically bolded or bolded and enlarged in al-Abhath (see

Figures 7–8). In some headers, as mentioned above, an entirely different typeface

was employed (see Figure 3)—although this is a less common practice.

Other modifications to the font of the typeface, e.g., footnotes, superscript

(decreased text size) numerals, also seem to be correlated with decreased accuracy

rates. In the future, this could be addressed by ensuring that a sufficient number of

lines of training data with such font modifications is included.

Figure 5: Example of text in italics.

Figure 6: Example of poor transcription of italicized passage in figure 5.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 15 of 30

Ligatures/Atypical Letter or dot forms
Not surprisingly, ligatures and other types of less common letter patterns and dot

placements led to less accurate transcriptions in the OCR output (see Figures 9–14).

This same problem has been observed in an earlier study as well (Kiessling et al. 2017).

It is nearly impossible to completely avoid this problem, but a more systematic

approach to training data generation that selected pages/lines of data with an eye

towards ensuring sufficient representation of the maximum number of ligatures

could improve OCR accuracy on these characters/character combinations.

Figure 8: Bolded and enlarged text size header and poor transcription.

Figure 7: Bolded and enlarged text size header and poor transcription.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 16 of 30

Figure 9: Example of problematic ligature and error in transcription.

Figure 10: Example of problematic ligature and error in transcription.

Figure 11: Atypical dot placement.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 17 of 30

Figure 14: Atypical dot/letter placement and poor scan quality.

Figure 13: Atypical letter pattern (printing error?)

Figure 12: Atypical dot placement.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 18 of 30

Vocalization Diacritics
Words that contained vocalization marks also appear more frequently to have errors

in transcription, which leads us to believe that they are interfering with character

recognition. This tendency especially can be seen in examples of heavy vocalization,

such as the fully vocalized Qur’anic passage seen in Figure 15, which are poorly

transcribed. Figure 15 is an extreme case that is an outlier in the al-Abhath data, but

it clearly illustrates this problem. Moreover, although al-Abhath journal articles are not

heavily vocalized, this could be a significant issue in other Arabic texts that are heavily

vocalized.

In general, OpenITI has traditionally followed the practice of not transcribing Arabic

vocalization marks in our training data production (with one exception discussed

below). We have followed this practice for three reasons: (1) vocalization is often

inconsistent and sometimes incorrect (so it is better to allow the individual scholar

to determine the proper vocalization based upon their reading); (2) vocalization can

interfere with computational textual analysis (computational linguists, for example,

typically remove it in their normalization of texts in preparation for analysis); and,

(3) not all full-text search algorithms support vocalized text in a useful way. There is

one problem with this approach, however, that we have found in both this study and

another concurrent one on Persian OCR. If there is a sufficient amount of diacritics

in the original text, the model will “learn” to ignore vocalization marks and it will not

interfere with character recognition. However, if the original text is lightly vocalized

and not enough examples of vocalization marks are contained in the training data,

then it appears that the model does not “learn” well enough to ignore them and

thus their presence in a word interferes with accurate character recognition. This

situation presents us with a dilemma around which we need to develop a set of

guidelines: we do not want to include vocalization because of the aforementioned

Figure 15: Highly vocalized Qur’anic passage that is transcribed poorly due to diacritics.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 19 of 30

reasons and because including them in the training data will require even more time

expenditure in the training data generation process, but by not including them in

texts with light vocalization (e.g., al-abhath, some of the Persian texts in our other

tests) character recognition is reduced in words with them.

Missed fatḥa tanwīn
The exception to our traditional treatment of vocalization discussed in the previous

section is the case of the Arabic diacritic fatḥa tanwīn (ًا). As observed in the CER

reports, missed fatḥa tanwīns were a significant source of errors. We also observed

this in the manual review of the OCR output (see Figure 16).

Although in the past we have not transcribed fatḥa tanwīns in the training

data production process, we did include fatḥa tanwīns in the JSTOR pilot training

data. In many cases the fatḥa tanwīns were transcribed correctly (see Figure 17 for

comparison sake). However, as both the CER reports and manual review showed, they

still remained a relatively common source of errors. The reason(s) that fatḥa tanwīn

Figure 16: Missed fatḥa tanwīn.

Figure 17: Correctly transcribed fatḥa tanwīn from same page as Figure 16.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 20 of 30

remained a problem in the transcription process could be related to either (1) its

lack of sufficient representation in the training data, or (2) its position in the line

segment—i.e., in some cases it might be partially getting cut off since it appears so

high in the line segment box. In either case, we are inclined to ignore fatḥa tanwīns

in future training data production.

Punctuation marks, number, and other non-alphanumeric
symbols
Punctuation marks, numbers, and other non-alphanumeric symbols (e.g., $)—especially

representatives of each of these categories that were less commonly used in al-Abhath—

were another recurring source of errors. The way to address this problem is by making

sure these signs, symbols, and numbers are sufficiently represented in the training data.

Hamzas
The hamza character was another common source of errors in the output, both in

the sense that it was misrecognized (see Figures 18–19) and inserted in instances in

which it was not in the original scan (see Figure 20).

Figure 18: Missed hamza.

Figure 19: Missed hamza on alif.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 21 of 30

Again, this is a case in which more focused training data will improve recognition

rates—an intervention we must make at the training data generation phase of the

OCR process.

Atypical text presentation format and kashīda/tatwīl
(elongation character)
There are a series of errors that occur in the context of atypical presentation formats/

atypical character patterns. These range from the use of the Arabic elongation

character (kashīda/tatwīl) (see Figure 21) to various types of table formats (see

Figures 22–24).

Although the character recognition in these examples is usually not as poor

as in Figure 23, we still observed that errors seem to appear more frequently in

such contexts (see the better recognition in Figures 21 and 24). More training data

from these atypical presentation formats and character patterns will help improve

Figure 21: Read letter ‘sin’ into word due to kashīda/tatwīl (elongation).

Figure 20: Inserted extra hamza.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 22 of 30

Figure 22: Example of table format.

Figure 23: Example of particularly poor transcription on an atypical (table)
presentation format.

Figure 24: Example of particularly poor transcription on another atypical (table)
presentation format.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 23 of 30

accuracy, but improvements in line segmentation are also necessary for such

examples as Figure 23.2

Non-Arabic language
There were two significant types of transcription errors that were related to the

presence of non-Arabic language in the original text. The first, seen in Figure 25,

is the poor transcription of non-Arabic characters on a page that predominantly

contains Arabic text. (Figure 25 represents a particularly poor transcription of the

non-Arabic text; most transcriptions in such instances were much more accurate.)

The second type of error that occurred in the context of non-Arabic script was

the inverse: that is, poor transcription of Arabic text on a page that is predominantly

composed of a non-Arabic language (see Figure 26).

This is a known problem that can be addressed through the development of

multi-language OCR models—a project that OpenITI is currently working on.

Poor scan quality
Poor scan/print quality—including, errant marks (see Figure 27), lack of ink (see

Figure 28), misplaced letters/punctuation (Figure 13)—is not a particularly

 2 Full view of our OCR post-correction interface is shown in figures 24–26 in order to show the broader

page context from which the highlighted lines are drawn and displayed in a line pair (image of line

and its digital transcription) in the pop-up. Specifically, please note that in figure 24 this line is drawn

from a larger table and in figures 25–26 this line is drawn from a page with significant admixture of

both Arabic and Persian in the text.

Figure 25: Example of particularly poor transcription of non-Arabic language in a
page of primarily Arabic text.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 24 of 30

Figure 26: Page with substantial Non-Arabic language interferes with Arabic OCR.

Figure 27: Example of poor scan quality—black shading in background of letters.

Figure 28: Example of poor scan quality—missing print in letter.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 25 of 30

common source of errors in the al-Abhath data, but there is a critical mass of errors

caused by this problem.

This problem cannot be addressed in the OCR process. OCR accuracy is (obviously)

limited by the quality of the original scans.

Line segmentation
One final error type that should be mentioned is line segmentation errors (see

Figures 29–31).

This type of error was not commonly found in the OpenITI manual accuracy

assessment (Figures 29–30 were errors identified in the outside contractor’s review

of the OCR output), but there were a few cases in which the line segmenter missed

a section or a word of a line. Typically this would occur in atypical text presentation

formats, such as the table seen in Figure 31.

Figure 30: Large header segmented as one line (from outside contractor accuracy
review).

Figure 29: Missed line segments (from outside contractor accuracy review).

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 26 of 30

Truncation of Arabic text lines is a known problem for the Latin-script-

optimized line segmenter in the version of Kraken that was used for this study. The

implementation of a novel trainable layout analysis method has largely solved this

issue (Kiessling et al. 2019).

Recommendations and future avenues of development for
open source Arabic-script OCR
The results of this study indicate that work in the following three areas could generate

significant improvements for open source Arabic-script OCR:

1. Systematic training data production. Instead of generating training

data in a completely randomized (or haphazard) manner (as is often done),

future Arabic-script OCR projects need to study the particularities of the

documents they plan to OCR and make sure that the pages selected for

training data production contain a sufficient number of the less common

ligatures, headers, vocalization marks, footnote texts, numbers, and oth-

er particularities of the works to be OCR’d. We followed this randomized

training data generation approach in the past (Kiessling et al. 2017). (See

Springmann et al. 2018 for an example of a dataset resulting from hap-

hazard convenience sampling, i.e. harvesting data from sources on which

existing methods already produce near-perfect results.) This more system-

atic approach to training data production will require more time upfront.

But the models produced in this manner could potentially achieve much

higher baseline accuracy and reduce the burden of postcorrection.

2. Generalized models. One of the most exciting results from this study

was the significant improvements in accuracy achieved with the general-

ized Arabic model. The success of this approach tentatively suggests that

if we continue to add training data sets to this generalized model we can

Figure 31: Line segmenter missed final word in the line.

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 27 of 30

anticipate achieveing higher levels of accuracy on both typefaces on which

we have already trained models and new typefaces for which we have no

training data yet. If this pattern holds true in future studies, we would be

able to gradually reduce the time and resources necessary to achieve high

level accuracy (>97%) on new typefaces in the future. However, more re-

search on generalized models is needed as both the optimal training data

selection, including artificial data produced by methods such as (Milo and

Gonzalez, 2019), for such models and the actual variance on an open text

corpus is currently unknown.

3. There are a range of technical improvements—e.g., multi-language models,

improved line segmentation and layout analysis—that could significantly

improve OCR accuracy numbers. Efforts are currently underway in both

the eScripta project (of which Kiessling is a team member) and OpenITI’s

Arabic-script OCR Catalyst Project (OpenITI AOCP) to address each of these

technical issues.

Acknowledgements
We would like to thank David Smith (Northeastern University) for his suggestions

and feedback on this study. This work was supported by JSTOR through their

National Endowment for the Humanities-funded feasibility study on high-quality

digitization and digital preservation of Arabic scholarly journals [grant number

PW-253861-17].

Competing interests
This work was supported by JSTOR through their National Endowment for the

Humanities-funded feasibility study on high-quality digitization and digital

preservation of Arabic scholarly journals [grant number PW-253861-17].

Author contributions
Authors are listed in alphabetical order. The corresponding author is mtm.

Conceptualization

bk, mtm

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 28 of 30

Data curation

bk, gk, mtm, ks

Formal analysis

bk

Funding acquisition

mtm

Investigation

bk, gk, mtm, ks

Methodology

bk, mtm

Project administration

mtm

Resources

bk, mtm

Software

bk

Supervision

mtm

Validation

bk

Visualization

bk, mtm

Writing – original draft

bk, mtm

Writing – review & editing

bk, gk, mtm, ks

Editorial contributions
Recommending Editor: Dr. Daniel O’Donnell, University of Lethbridge

Section Editor/Copy Editor: Darcy Tamayose, University of Lethbridge Journal

Incubator

Bibliography Editor: Shahina Parvin, University of Lethbridge Journal Incubator

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 29 of 30

References
Alghamdi, Mansoor, and William Teahan. 2017. “Experimental Evaluation of

Arabic OCR Systems.” PSU Research Review 1(3): 229–241. United Kingdom:

Emerald Publishing Limited. DOI: https://doi.org/10.1108/PRR-05-2017-0026

Clausner, Christian, Apostolos Antonacopoulos, Nora Mcgregor, and Daniel

Wilson-Nunn. 2018. “ICFHR 2018 Competition on Recognition of Historical

Arabic Scientific Manuscripts–RASM2018.” 2018 16th International Conference

on Frontiers in Handwriting Recognition (ICFHR), 471–476. Niagara Falls, NY.

DOI: https://doi.org/10.1109/ICFHR-2018.2018.00088

Graves, Alex, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006.

“Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with

Recurrent Neural Networks.” In Proceedings of the 23rd International Conference

on Machine Learning, 369–376. New York: Association for Computing Machinery.

Accessed April 28, 2021. DOI: https://doi.org/10.1145/1143844.1143891

Keinan-Schoonbaert, Adi. 2019. “Results of the RASM2019 Competition on

Recognition of Historical Arabic Scientific Manuscripts.” British Library

Digital Scholarship Blog. Accessed April 28, 2021. https://blogs.bl.uk/digital-

scholarship/2019/09/rasm2019-results.html.

–––. 2020. “Using Transkribus for Arabic Handwritten Text Recognition.” British Library

Digital Scholarship Blog. Accessed April 28, 2021. https://blogs.bl.uk/digital-

scholarship/2020/01/using-transkribus-for-arabic-handwritten-text-recognition.html.

Kiessling, Benjamin. 2019. “Kraken—A Universal Text Recognizer for the

Humanities.” DH2019 Utrecht. Netherlands: Utrecht University. DOI: https://

doi.org/10.34894/Z9G2EX

–––. n.d. Kraken. GitHub Repository. Accessed April 19, 2021. https://github.com/

mittagessen/kraken.

Kiessling, Benjamin, Daniel Stökl Ben Ezra, and Matthew Thomas Miller. 2019.

“BADAM: A Public Dataset for Baseline Detection in Arabic-script Manuscripts.”

HIP 2019: 5th International Workshop on Historical Document Imaging and

Processing. New York: Association for Computing Machinery. DOI: https://doi.

org/10.1145/3352631.3352648

https://doi.org/10.1108/PRR-05-2017-0026
https://doi.org/10.1109/ICFHR-2018.2018.00088
https://doi.org/10.1145/1143844.1143891
https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.html
https://blogs.bl.uk/digital-scholarship/2019/09/rasm2019-results.html
https://blogs.bl.uk/digital-scholarship/2020/01/using-transkribus-for-arabic-handwritten-text-recognition.html
https://blogs.bl.uk/digital-scholarship/2020/01/using-transkribus-for-arabic-handwritten-text-recognition.html
https://doi.org/10.34894/Z9G2EX
https://doi.org/10.34894/Z9G2EX
https://github.com/mittagessen/kraken
https://github.com/mittagessen/kraken
https://doi.org/10.1145/3352631.3352648
https://doi.org/10.1145/3352631.3352648

Kiessling et al: Advances and Limitations in Open Source
Arabic-Script OCR

Art. 8, page 30 of 30

Kiessling, Benjamin, Matthew Thomas Miller, Maxim Romanov, and Sarah

Bowen Savant. 2017. “Important New Developments in Arabographic Optical

Character Recognition (OCR).” Al-‘Usur al-Wusta 25: 1–13. Accessed January 20,

2019. DOI: https://doi.org/10.17613/M6TZ4R

Kiplinger, John, and Anne Ray. 2019. “Digitizing Printed Arabic Journals: Is a Scalable

Solution Possible?” JSTOR Arabic-Language Digitization Planning. Accessed April

22, 2019. https://about.jstor.org/wp-content/uploads/2019/08/NehAward_

PW-253861-17_JstorArabicDigitizationInvestigation_WhitePaper_20190329.pdf

Milo, Thomas, and Alicia Gonzalez Martinez. 2019. “A New Strategy for Arabic

OCR: Archigraphemes, Letter Blocks, Script Grammar, and Shape Synthesis.” In

DATeCH2019 Proceedings of the 3rd International Conference on Digital Access to

Textual Cultural Heritage, 93–96. Brussels, Belgium.

Open Islamicate Texts Initiative. 2021a. CorpusBuilder 1.0. Accessed April 19.

https://www.openiti.org/projects/corpusbuilder.

–––. 2021b. “OCR_GS_Data.” GitHub Repository. Accessed April 19. https://github.

com/OpenITI/OCR_GS_Data/tree/master/fas.

Springmann, Uwe, Christian Reul, Stefanie Dipper, and Johannes Baiter.

2018. “Ground Truth for Training OCR Engines on Historical Documents in

German Fraktur and Early Modern Latin.” In Journal for Language Technology

and Computational Linguistics 33(1): 97–114. Germany: German Society for

Computational Linguistics and Language Technology.

How to cite this article: Kiessling, Benjamin, Gennady Kurin, Matthew Miller, and Kader
Smail. 2021. “Advances and Limitations in Open Source Arabic-Script OCR: A Case Study.”
Digital Studies/Le champ numérique 11(1): 8, pp. 1–30. DOI: https://doi.org/10.16995/
dscn.8094

Submitted: 26 September 2019 Accepted: 10 September 2020 Published: 03 November 2021

Copyright: © 2021 The Author(s). This is an open-access article distributed under the
terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS Digital Studies/Le champ numérique is a peer-reviewed open
access journal published by Open Library of Humanities.

https://doi.org/10.17613/M6TZ4R
https://about.jstor.org/wp-content/uploads/2019/08/NehAward_PW-253861-17_JstorArabicDigitizationInvestigation_WhitePaper_20190329.pdf
https://about.jstor.org/wp-content/uploads/2019/08/NehAward_PW-253861-17_JstorArabicDigitizationInvestigation_WhitePaper_20190329.pdf
https://www.openiti.org/projects/corpusbuilder
https://github.com/OpenITI/OCR_GS_Data/tree/master/fas
https://github.com/OpenITI/OCR_GS_Data/tree/master/fas
https://doi.org/10.16995/dscn.8094
https://doi.org/10.16995/dscn.8094
http://creativecommons.org/licenses/by/4.0/

	Introduction
	OpenITI OCR software: Kraken
	The OpenITI JSTOR OCR pilot
	OpenITI accuracy study
	Doubled letter
	Header/Font alteration, footnotes, and superscript numerals
	Ligatures/Atypical Letter or dot forms
	Vocalization Diacritics
	Missed fatḥa tanwīn
	Punctuation marks, number, and other non-alphanumeric symbols
	Hamzas
	Atypical text presentation format and kashīda/tatwīl (elongation character)
	Non-Arabic language
	Poor scan quality
	Line segmentation
	Recommendations and future avenues of development for open source Arabic-script OCR
	Acknowledgements
	Competing interests
	Author contributions
	Editorial contributions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Figure 25
	Figure 26
	Figure 27
	Figure 28
	Figure 29
	Figure 30
	Figure 31
	Table 1
	Table 2
	Table 3

