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This work presents an accuracy study of the open source OCR engine, 
Kraken, on the leading Arabic scholarly journal, al-Abhath. In contrast with 
other commercially available OCR engines, Kraken is shown to be capable of 
producing highly accurate Arabic-script OCR. The study also assesses the 
relative accuracy of typeface-specific and generalized models on the al-Abhath 
data and provides a microanalysis of the “error instances” and the contextual 
features that may have contributed to OCR misrecognition. Building on 
this analysis, the paper argues that Arabic-script OCR can be significantly 
improved through (1) a more systematic approach to training data production, 
and (2) the development of key technological components, especially multi-
language models and improved line segmentation and layout analysis.

Keywords: Optical Character Recognition; OCR; Persian; Arabic; Arabic-
script languages; typography

Cet article présente une étude d’exactitude du moteur ROC open source, 
Krakan, sur la revue académique arabe de premier rang, al-Abhath. 
Contrairement à d’autres moteurs ROC disponibles sur le marché, Kraken se 
révèle être capable de produire de la ROC extrêmement exacte de l’écriture 
arabe. L’étude évalue aussi l’exactitude relative des modèles spécifiquement 
configurés à des polices et celle des modèles généralisés sur les données 
d’al-Abhath et fournit une microanalyse des « occurrences d’erreurs », ainsi 
qu’une microanalyse des éléments contextuels qui pourraient avoir contribué 
à la méreconnaissance ROC. S’appuyant sur cette analyse, cet article fait 
valoir que la ROC de l’écriture arabe peut être considérablement améliorée 
grâce à (1) une approche plus systématique d’entraînement de la production 
de données et (2) grâce au développement de composants technologiques 
fondamentaux, notammentl’amélioration des modèles multilingues, de la 
segmentation de ligne et de l’analyse de la mise en page.

Mots-clés: Reconnaissance optique de caractères; ROC; persan; arabe; 
langues utilisant l’alphabet arabe; typographie
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Introduction
In late 2017 JSTOR initiated a collaboration with the Open Islamicate Texts Initiative 

(OpenITI) to run an Optical Character Recognition (OCR) pilot for the JSTOR Arabic 

digitization feasibility study (funded through a generous grant by the National 

Endowment for the Humanities).1 The problem that JSTOR had encountered in 

their feasibility study was the problem that has long plagued efforts of scholars 

and librarians to digitize Arabic, Persian, Urdu, and Ottoman Turkish print 

documents: Arabic-script OCR programs produce notoriously poor results, despite 

the optimistic claims of some of their marketing materials (Alghamdi and Teahan 

2017). Mansoor Alghamdi and William Teahan open their 2017 study by noting 

that “although handwritten script is significantly more challenging than printed 

Arabic text for OCR, Arabic printed text OCR still poses significant challenges.” After 

evaluating Sakhr, Finereader, RDI Clever Page, and Tesseract (Version 3)—the main 

options for Arabic-script OCR—on Arabic print works they conclude that “all the 

evaluated Arabic OCR systems have low performance accuracy rates, below 75 per 

cent, which means that the time which would take to manually correct the OCR 

output would be prohibitive.” These results are consonant with the authors’ own 

experience using these OCR engines and those of our colleagues in the field of 

Islamicate Studies. In addition to these programs’ lackluster performance, they also 

are not ideal systems for academic users for other reasons as well—for example, 

several are prohibitively expensive (for the average academic) and they offer little 

out of the box trainability (i.e., they come only with a generic OCR model and they 

cannot be trained to recognize new typefaces). With these problems in mind, in 

2016 OpenITI began working on the development of open source OCR tools for 

Arabic-script languages (in print form) in collaboration with the computer scientist 

 1 OpenITI is a multi-institutional initiative that is focused on building digital infrastructure for the 

computational study of the texts of the Islamicate world. It is currently led by Dr. Matthew Thomas 

Miller (Roshan Institute for Persian Studies, University of Maryland, College Park), Dr. Sarah Bowen 

Savant (Aga Khan University, London), and Dr. Maxim Romanov (University of Vienna). Benjamin 

Kiessling (University of Leipzig/Université PSL) is one of OpenITI’s primary computer science 

collaborators and he served as the technical lead for the OpenITI JSTOR OCR pilot. More information 

on JSTOR’s NEH-funded project can be found in Kiplinger and Ray 2019.
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Benjamin Kiessling. To date our work has primarily focused on Arabic-script OCR 

for print documents since handwritten text recognition (HTR) for Arabic-script 

manuscripts presents a series of additional issues (e.g., even more complex line 

segmentation and page layout analysis problems, a dizzying array of different script 

styles and scribal hands). However, we have begun preliminary experiments on 

Persian and Arabic manuscripts with some promising initial results using distantly 

supervised methods of training data production and the new line segmentation 

methods developed by Kiessling (Kiessling et al. 2019). (See also the experiments on  

HTR for Arabic manuscripts led by the British Library in Clausner et al. 2018; Keinan-

Schoonbaert 2019; Keinan-Schoonbaert 2020). OpenITI’s first OCR study with the 

new open source OCR engine, Kraken, developed by Kiessling, demonstrated that 

it was capable of achieving Arabic script-only accuracy rates >97.5% with as little 

as 800–1,000 lines of training data for that document’s typeface (Kiessling et al. 

2017). (Training data, in the context of OCR, consists of pairs of scans of individual 

lines of text with their digital transcription.) OpenITI has also replicated these 

high accuracy rates on Persian texts, with Perso-Arabic script-only accuracy rates 

ranging from 96.3% to 98.62% with typeface-specific models. (This work has not 

been published yet, but the full CER reports for these tests can be viewed in Open 

Islamic Texts Initiative 2021b, “OCR_GS_Data”.) In this work, we present the results 

of our OCR study done in collaboration with JSTOR on the al-Abhath Arabic journal 

(arguably the most important Arabic language scholarly journal in the Middle 

East). In contrast with many OCR accuracy reports, in this study we performed 

both detailed manual and automatic Character Error Rate (CER) accuracy checks, 

which enabled us to develop a much more fine-grained understanding of where the 

Kraken OCR engine was failing to properly transcribe the Arabic text. These results 

confirm Kraken’s ability to produce highly accurate Arabic-script OCR, but they also 

provide new insights into the importance of systematic training data production, 

the relative accuracy of typeface-specific and generalized models, and the key 

technological improvements needed for improved Arabic-script OCR output.

Section two reviews the open-source software used in this study before the 

JSTOR Arabic OCR pilot and accuracy study are described in sections three and 
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four, respectively. Section five contains our recommendations for the necessary 

technological and data improvements needed to improve Arabic OCR in the future.

OpenITI OCR software: Kraken
Kraken is an open-source OCR engine that was developed by Benjamin Kiessling. It 

utilizes a segmentationless sequence-to-sequence approach (Graves et al. 2006) with a 

hybrid convolutional and recurrent neural network to perform character recognition 

(Kiessling 2019) which obviates the need for character-level segmentation—i.e., the 

neural network responsible for text extraction from image data recognizes whole 

lines of text without resorting to smaller subunits like words or characters which can 

be difficult to accurately compute for languages written in connected script.

As an initial preprocessing step page images are converted into black and white 

through a process called binarization. Layout analysis, i.e. the detection of lines for 

subsequent steps, is then performed on this binarized image with an algorithm 

based on traditional computer vision methods. In a final step, the previously 

detected rectangular lines are fed into the neural network for character recognition. 

(More on Kraken’s technical details can be found in Kiessling, n.d.) The benefit of 

eliminating fine-grained segmentation in comparison to older character segmenting  

systems such as tesseract 3, Sakhr, and most likely Abbyy FineReader (as a proprietary 

software the exact nature of the classifier is unknown) can be seen not only during 

recognition but also in the streamlined production process of training data for 

adaptation of the OCR system to new scripts and typefaces. With character-based 

systems annotators have to manually locate and transcribe single characters while 

Kraken is trained on full line transcriptions which are faster to annotate and verify, 

especially in the case of connected scripts.

The OpenITI JSTOR OCR pilot
OpenITI began the JSTOR OCR pilot by performing a randomized review of the Arabic 

typefaces used in each year of the al-Abhath journal. The page images of the journal 

were obtained from the Arabic and Middle Eastern Electronic Library (Project AMEEL) 

of Yale University Library. It was determined that there were two basic typefaces in 

the al-Abhath journal archive, with the first typeface being much more prevalent than 
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the second (typeface #1: volumes 1–33, 36–39, 48–50; typeface #2: volumes 34–35, 

40–47). Examples of these two typefaces can be seen in Figures 1–2 (for comparison 

sake, the last word in both lines—on the left of the page—is the same word).

Both typefaces had some internal font differences and other minor character/

script variations (e.g., patterns of use of alef hamza, slight shifts in placement of dots, 

slight differences in the degree of curvature of lines in a couple of instances, and 

minor ligature differences). This intra-typeface variation was especially apparent in 

typeface #1, which had a long run as al-Abhath’s typeface. To address this issue it 

was decided that the best approach would be to produce approximately 5,000 lines 

of training data for the first typeface and 2,000 lines of training data for the second 

typeface.

After a randomized sample of the pages representing each typeface were 

selected, research assistants working with the OpenITI team produced the training 

data for these 7,000 lines using CorpusBuilder 1.0—a new OCR postcorrection 

platform produced through the collaboration of OpenITI and Harvard Law School’s 

SHARIAsource project. (For more on CorpusBuilder 1.0, please see Open Islamicate 

Texts Initiative, “CorpusBuilder 1.0,” 2021a) After these 7,000 lines of training data 

were double checked for accuracy, a final spot review was conducted. This “gold 

standard” data was then utilized for model production and OCR. (This training 

data is available for reuse and can be found in Open Islamic Texts Initiative (2021b, 

“OCR_GS_Data”)

The first round of OCR accuracy tests was performed by an outside contractor, 

which JSTOR hired to conduct a ten-page manual accuracy comparison between the 

Kraken output and the corresponding output for ABBYY (see Table 1).

Figure 1: Typeface #1 Sample.

Figure 2: Typeface #2 Sample.



Kiessling et al: Advances and Limitations in Open Source 
Arabic-Script OCR

Art. 8, page 6 of 30

With the exception of page #2, OpenITI performed substantially better on 

the pages the contractor reviewed, achieving >99% accuracy in 4/10 pages, >97% 

accuracy in 6/10 pages, >95.8% in 8/10 pages. The exceptions to these generally 

impressive numbers were pages #2 and #8 in which OpenITI only achieved 

27.027% and 93.539% respectively. While the contractor’s review was quite useful 

and generally confirmed OpenITI’s results from its previous work (i.e., that Kraken 

achieves significantly higher accuracy rates on Arabic texts than the commercial OCR 

solutions for Arabic), the OpenITI team discovered upon further review that there 

were several problems with the contractor’s study. (For OpenITI’s previous study on 

Kraken, please see: Kiessling et al. 2017.)

First, Page #2—by far the most disappointing result—is a highly atypical page of 

al-Abhath data. It only contains 37 characters total and much of these are contained 

in a large header that is in a highly calligraphic script and is heavily vocalized (see 

Figure 3). It is noteworthy that Abbyy performed better on this script, but this page 

is an extreme outlier in the data.

Table 1: Contractor’s Accuracy Comparison of Abbyy and OpenITI (Kraken) OCR 
Results.

Page (Tiff) Number Total 
Number of 
characters

Abbyy 
Character 

Errors

OpenITI 
Character 

Errors

Abbyy 
Accuracy 

Rate

OpenITI 
Accuracy 

Rate
Page #1 (00010004_ 
187997831.tif)

1230 270 38 78.049% 96.911%

Page #2 (00010004_ 
187997832.tif)

37 15 27 59.459% 27.027%

Page #3 (00010031_ 
187998459.tif)

3182 355 23 88.843% 99.277%

Page #4 (00010063_ 
187999338.tif)

3157 327 29 89.642% 99.081%

Page #5 (00010129_ 
188001031.tif)

3222 378 16 88.268% 99.503%

Page #6 (00010012.tif) 3259 326 75 89.997% 97.699%

Page #7 (00010030.tif) 2503 230 17 90.811% 99.321%

Page #8 (00010126.tif) 2631 252 170 90.422% 93.539%

Page #9 (00010127.tif) 2294 223 35 90.279% 98.474%

Page #10 (00010132.tif) 2296 243 96 89.416% 95.819%
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The second issue that we identified in the contractor’s review was that they were 

marking certain differences between the original scans and OCR output as errors 

which were not true errors, and, in some cases, even marked some characters in 

the OCR output as errors that were not errors at all. For example, in the former 

case, they marked all numbers as errors in the OpenITI OCR output which were 

rendered as western Arabic numerals (e.g., 1, 2, 3) instead of as eastern Arabic 

numerals (e.g., ٣ ,٢ ,١)—a problem that was particularly prevalent on page #8 (thus 

at least partially responsible for OpenITI’s comparatively lower accuracy rate on 

page #8). The OCR rendered them as western Arabic numerals instead of eastern 

Arabic numerals because we decided to merge western and eastern Arabic numerals 

into their universal numerical values in the OCR process and then represent that 

value in western Arabic numerals in the OCR output. (This practice of collapsing 

Figure 3: Header.
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numeric values to their universal numerical value can be done for multiple reasons, 

but, in this particular case, one of our primary motivating factors was the fact that 

there were inconsistencies in the transcription practice of numbers in the training 

data.) These differences, thus, are not true errors—their numerical value is correct—

and their representation can be changed to eastern Arabic numerals if that is what 

users prefer. Another similar issue was discovered in the contractor’s treatment 

of diacritics: they routinely marked correctly rendered words as incorrect if the 

word’s original diacritics were not included in the OCR output. However, again, this 

difference in the original text and the OCR output is not a true error in transcription 

because OpenITI has followed the practice (with one exception discussed further  

below) of not reproducing vocalization in its training data (for reasons elaborated 

below) and thus the fact that vocalization were not rendered in OpenITI’s OCR output 

is actually a sign that the Kraken OCR engine was functioning correctly. (This training 

data generation practice can be changed if the users desire, and given the results in 

OpenITI’s larger accuracy study described below, this change may be advisable in the 

future, depending on the requirements of each individual user’s use case.)

These problems in the contractor’s approach to error designation led them 

to calculate lower accuracy estimates for OpenITI OCR output than it achieved 

in actuality—a problem that was particularly accentuated in the case of page #8, 

which contained a larger amount of numbers than the other pages the contractor 

reviewed. Due to the problems discovered in the contractor’s initial accuracy study, 

JSTOR requested that OpenITI perform a more detailed accuracy assessment on 

approximately fifty pages.

OpenITI accuracy study
The OpenITI team began by generating automatic character error rate (CER) reports 

for the al-Abhath data (see Table 2 for full results). In the first round of experiments, 

we built two different models—typeface model #1 and #2—based on the two different 

sets of training data produced for the two typefaces that we identified in the full run 

of al-Abhath. After extracting 1,000 lines of training data from the original 5,000 

lines for typeface #1 and 700 lines of training data from the original 2,000 lines for 
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typeface #2 to use as validation sets, we then trained the model on the remaining 

lines and tested these models’ accuracy using the validation sets. This method of 

isolating a fixed number of lines of the training data as a validation set for automatic 

accuracy testing is a standard procedure when evaluating machine learning models. 

These accuracy results can be found in rows 2–3 in Table 2. These typeface-specific 

models were the ones used to produce the OCR output that was transferred to JSTOR 

and that the contractor reviewed for their accuracy study.

In the time between the delivery of the al-Abhath OCR output to JSTOR and 

OpenITI’s manual accuracy study (discussed below), we began developing a 

generalized Arabic model from all of the training data that OpenITI has produced 

over the last year two years—circa 15,000 lines. (All of this gold standard training data 

can be found in Open Islamic Texts Initiative 2021b, “OCR_GS_Data.”) Generalized 

OCR models incorporate character features from all of the typefaces represented in 

the data upon which it is trained and therefore can often achieve higher levels of 

accuracy on a broader range of typefaces. We decided to test this model on all of 

the al-Abhath data to determine if total OCR accuracy could be improved and, if so, 

by how much. The results, shown in row #4 of Table 2, were impressive. For this 

accuracy assessment, 2,096 lines of the 7,000 lines of training data were isolated as 

Table 2: Overview of OCR accuracy rates (drawn from character error rate (CER) 
reports).

Model Total 
Character 
Accuracy

Arabic 
Script Only 
Accuracy

Common 
Character 
Accuracy*

Inherited 
Character 

Accuracy**

Typeface #1 Model 95.96% 97.56% 96.91% 79.67%

Typeface #2 Model 94.84% 97.11% 94.16% 85.18%

Generalized Model 97.41% 98.46% 96.36% 89.44%

* “Common characters” are characters shared by multiple scripts, primarily punctuation and 
other signs and symbols. In Arabic script, the kashīda or tatwīl (elongation character) is 
included in the common script class.

** “Inherited characters” are characters, such as vocalization, that can be used on multiple 
languages and they only come to be defined in reference to the character with which they 
are combined (i.e., they “inherit” the script of the base character with which it is used).



Kiessling et al: Advances and Limitations in Open Source 
Arabic-Script OCR

Art. 8, page 10 of 30

a validation set. The generalized model’s total character accuracy rate was 97.41%—a 

2.57% improvement over the typeface #2-only model (i.e., a ~50% improvement 

rate) and 1.45% improvement over the typeface #1-only model—and its Arabic script-

only accuracy went up to a respectable 98.46%. The generalized model performed 

better than the typeface-specific models in all categories, but its most significant 

gains were in the category of “inherited” characters.

According to the CER reports, the most significant source of errors in both the 

typeface #2 model and the generalized model were whitespace (spacing) errors and 

the Arabic vocalization marker, fatḥa tanwīn (unicode codepoint: Arabic fatḥatan). In 

the case of the typeface #1 model, whitespace errors were again the most significant 

source of errors, followed by kāf (ك), yā’ (ي), and then fatḥa tanwīn errors. The hamza 

above (ء) character ranks as the seventh most common error in typeface #1 model 

and fifth in typeface #2 model. The mīm (م) character also is a common error in both 

the typeface #1 and #2 models, ranking as the sixth and fifth most common error in 

their CER reports respectively.

Concurrent with the generation of CER reports, the OpenITI team began a far 

more expansive manual review of fifty—randomly selected—pages of the original 

OCR output produced by the typeface #1 and typeface #2-specific models. Each 

of these fifty pages were reviewed and then their error reports were collated into 

a master list of 1,096 total error instances. We use the term “error instance” here 

to highlight the fact that we are not exclusively recording individual, one-to-one 

character errors, but instances in the text in which one or more characters were read 

incorrectly. In most cases, this is a one-to-one character mistranscription, but in some 

other cases one character in the original was read as two or more in the OCR output 

or multiple characters in the original were read as one or none in the OCR output. 

In a few cases—discussed in more detail below—there are whole sections of text that 

are severely mistranscribed due to one or another feature in the original text. Finally, 

each error instance was examined with an eye towards identifying possible factors in 

its adjacent context that may have led to that error and then coded with any of the 

following categories that were applicable:
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1. Poor scan quality: an element in the raw scan is unclear, or extraneous 

marks are present.

2. Ligature/atypical letter or dot form: connection between letters or place-

ment of dots is in a less common form.

3. Vocalization: vocalization marks were present in original word.

4. Kashīda/tatwīl (elongation character): error appears in the context of a 

word that has been elongated.

5. Header/font alteration: bolded, italicized, or enlarged text.

6. Footnote: error appears in the context of a footnote.

7. Format: atypical format of presentation, e.g., table, list.

8. Hamza: mistranscribed character was a hamza or a hamza was present in 

the original word that was mistranscribed.

9. Doubled character: a single letter or number in the original scan was dou-

bled in the OCR output.

10. Missed fatḥa tanwīn: fatḥa tanwīn in the original text was not 

 transcribed.

11.  Punctuation or other symbol: error was a punctuation mark or other symbol.

12.  Non-Arabic language: original text was not Arabic.

13.  Numbers: error was a number.

14. Superscript numerals: error was a footnote numeral in the body of the 

text.

This list of error codes is a mixture of error types (#8–14) and the most common 

recurring contextual features of the errors (#1–7). For categories of the latter type, 

it is important to emphasize that the presence of any of these contextual features 

near an error in the original text does not necessarily mean that it caused the error. 

But their repeated co-occurrence may be related and thus suggest future avenues of 

research and/or the need to better address this issue in the process of future training 

data production. We should also point out that in the case of some errors none of the 

following category codes were applicable, which only means that the reason for their 

improper rendering was not immediately evident to the human reviewers.
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We do want to preface our presentation of the results of this manual review 

and error coding below with one further cautionary note. Manual evaluations are 

both essential and problematic: they provide far more detailed data (i.e., “thick data”) 

about the OCR output and where OCR is failing, but they are much more time and 

labor intensive (and thus more limited in scope) and subject to human error. The 

results presented in Table 3 should be understood in this light. They should be 

understood as a snapshot of the human-inferable errors present in the OCR output. 

Each error type in Table 3 and possible ways to address it will be discussed in more 

detail in separate sections.

Doubled letter
The “doubled letter” error type was the most frequent that we observed in the OCR 

output data (see example in Figure 4). (In the images in Figures 4–31 the Arabic text 

at the top of the images is the original scan and the text below is the OCR output.)

At first this error was perplexing. However, it was subsequently discovered that 

these “doubling” errors were an artifact of the decoding algorithm converting the 

Table 3: Error coding for error instances in OpenITI manual OCR output assessment.

Error Code Quantity Identified

Poor scan quality 25

Ligature/atypical letter or dot form 182

Vocalization 90

Kashīda/tatwīl (elongation character) 31

Header/font alteration 113

Footnote 88

Format 14

Hamza 97

Doubled letter 209

Missed fatḥa tanwīn 91

Punctuation or other non-alphanumeric symbols 25

Non-Arabic language 70

Numbers 94

Superscript numerals 26
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sequence of confidences for each character produced by the neural network into 

a series of characters. As the network assigns each character a probability for each 

pixel-wide vertical slice of the input line image and printed characters are wider than 

a single pixel an algorithm is needed to extract the actual line text from the longer 

character probability sequence. Our implementation was based on a thresholding 

and merging approach which can cause doubled characters when the network 

assigns a probability below the threshold for a character at a vertical slice between 

high probability slices for the same character. As a simplified example, assume 

the network assigns a probability for character x at 4 vertical slices: (0.9, 0.95, 0.6, 

0.9). Decoding with a threshold of 0.5 will result in an intermediate sequence xxxx 

that is then merged to x, while selecting a higher threshold of 0.7 will result in a 

potentially erroneous character sequence of xx merged from xx_x. This error has 

been effectively addressed by switching to a greedy decoding which always uses the 

highest probability character at each vertical slice.

Header/Font alteration, footnotes, and superscript 
numerals
Errors that occurred in the context of changes in the font (bolded, italicized, 

enlarged/decreased text size) represent the largest category of errors in the OCR 

output. Their total numbers are not even fully reflected in Table 3 because examples 

Figure 4: “Doubled Letter” errors.
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in which whole sections (see examples in Figures 5–6) were severely mistranscribed 

were not enumerated (character-by-character) in the error totals of the OpenITI 

manual assessment. Such sections were very rare, and in most other cases the OCR 

still rendered text with font alterations with a relatively high degree of accuracy, but 

font alterations do seem to increase error rates. One of the most common examples 

of this issue was observed in text headers (including both section headers and 

chapter titles), which were typically bolded or bolded and enlarged in al-Abhath (see 

Figures 7–8). In some headers, as mentioned above, an entirely different typeface 

was employed (see Figure 3)—although this is a less common practice.

Other modifications to the font of the typeface, e.g., footnotes, superscript 

(decreased text size) numerals, also seem to be correlated with decreased accuracy 

rates. In the future, this could be addressed by ensuring that a sufficient number of 

lines of training data with such font modifications is included.

Figure 5: Example of text in italics.

Figure 6: Example of poor transcription of italicized passage in figure 5.
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Ligatures/Atypical Letter or dot forms
Not surprisingly, ligatures and other types of less common letter patterns and dot 

placements led to less accurate transcriptions in the OCR output (see Figures 9–14). 

This same problem has been observed in an earlier study as well (Kiessling et al. 2017).

It is nearly impossible to completely avoid this problem, but a more systematic 

approach to training data generation that selected pages/lines of data with an eye 

towards ensuring sufficient representation of the maximum number of ligatures 

could improve OCR accuracy on these characters/character combinations.

Figure 8: Bolded and enlarged text size header and poor transcription.

Figure 7: Bolded and enlarged text size header and poor transcription.
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Figure 9: Example of problematic ligature and error in transcription.

Figure 10: Example of problematic ligature and error in transcription.

Figure 11: Atypical dot placement.
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Figure 14: Atypical dot/letter placement and poor scan quality.

Figure 13: Atypical letter pattern (printing error?)

Figure 12: Atypical dot placement.
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Vocalization Diacritics
Words that contained vocalization marks also appear more frequently to have errors 

in transcription, which leads us to believe that they are interfering with character 

recognition. This tendency especially can be seen in examples of heavy vocalization, 

such as the fully vocalized Qur’anic passage seen in Figure 15, which are poorly 

transcribed. Figure 15 is an extreme case that is an outlier in the al-Abhath data, but 

it clearly illustrates this problem. Moreover, although al-Abhath journal articles are not 

heavily vocalized, this could be a significant issue in other Arabic texts that are heavily 

vocalized.

In general, OpenITI has traditionally followed the practice of not transcribing Arabic 

vocalization marks in our training data production (with one exception discussed 

below). We have followed this practice for three reasons: (1) vocalization is often 

inconsistent and sometimes incorrect (so it is better to allow the individual scholar 

to determine the proper vocalization based upon their reading); (2) vocalization can 

interfere with computational textual analysis (computational linguists, for example, 

typically remove it in their normalization of texts in preparation for analysis); and, 

(3) not all full-text search algorithms support vocalized text in a useful way. There is 

one problem with this approach, however, that we have found in both this study and 

another concurrent one on Persian OCR. If there is a sufficient amount of diacritics 

in the original text, the model will “learn” to ignore vocalization marks and it will not 

interfere with character recognition. However, if the original text is lightly vocalized 

and not enough examples of vocalization marks are contained in the training data, 

then it appears that the model does not “learn” well enough to ignore them and 

thus their presence in a word interferes with accurate character recognition. This 

situation presents us with a dilemma around which we need to develop a set of 

guidelines: we do not want to include vocalization because of the aforementioned 

Figure 15: Highly vocalized Qur’anic passage that is transcribed poorly due to diacritics.
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reasons and because including them in the training data will require even more time 

expenditure in the training data generation process, but by not including them in 

texts with light vocalization (e.g., al-abhath, some of the Persian texts in our other 

tests) character recognition is reduced in words with them.

Missed fatḥa tanwīn
The exception to our traditional treatment of vocalization discussed in the previous 

section is the case of the Arabic diacritic fatḥa tanwīn (ًا). As observed in the CER 

reports, missed fatḥa tanwīns were a significant source of errors. We also observed 

this in the manual review of the OCR output (see Figure 16).

Although in the past we have not transcribed fatḥa tanwīns in the training 

data production process, we did include fatḥa tanwīns in the JSTOR pilot training 

data. In many cases the fatḥa tanwīns were transcribed correctly (see Figure 17 for 

comparison sake). However, as both the CER reports and manual review showed, they 

still remained a relatively common source of errors. The reason(s) that fatḥa tanwīn 

Figure 16: Missed fatḥa tanwīn.

Figure 17: Correctly transcribed fatḥa tanwīn from same page as Figure 16.



Kiessling et al: Advances and Limitations in Open Source 
Arabic-Script OCR

Art. 8, page 20 of 30

remained a problem in the transcription process could be related to either (1) its 

lack of sufficient representation in the training data, or (2) its position in the line 

segment—i.e., in some cases it might be partially getting cut off since it appears so 

high in the line segment box. In either case, we are inclined to ignore fatḥa tanwīns 

in future training data production.

Punctuation marks, number, and other non-alphanumeric 
symbols
Punctuation marks, numbers, and other non-alphanumeric symbols (e.g., $)—especially 

representatives of each of these categories that were less commonly used in al-Abhath—

were another recurring source of errors. The way to address this problem is by making 

sure these signs, symbols, and numbers are sufficiently represented in the training data.

Hamzas
The hamza character was another common source of errors in the output, both in 

the sense that it was misrecognized (see Figures 18–19) and inserted in instances in 

which it was not in the original scan (see Figure 20).

Figure 18: Missed hamza.

Figure 19: Missed hamza on alif.
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Again, this is a case in which more focused training data will improve recognition 

rates—an intervention we must make at the training data generation phase of the 

OCR process.

Atypical text presentation format and kashīda/tatwīl 
(elongation character)
There are a series of errors that occur in the context of atypical presentation formats/

atypical character patterns. These range from the use of the Arabic elongation 

character (kashīda/tatwīl) (see Figure 21) to various types of table formats (see 

Figures 22–24).

Although the character recognition in these examples is usually not as poor 

as in Figure 23, we still observed that errors seem to appear more frequently in 

such contexts (see the better recognition in Figures 21 and 24). More training data 

from these atypical presentation formats and character patterns will help improve 

Figure 21: Read letter ‘sin’ into word due to kashīda/tatwīl (elongation).

Figure 20: Inserted extra hamza.
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Figure 22: Example of table format.

Figure 23: Example of particularly poor transcription on an atypical (table) 
presentation format.

Figure 24: Example of particularly poor transcription on another atypical (table) 
presentation format.
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accuracy, but improvements in line segmentation are also necessary for such 

examples as Figure 23.2

Non-Arabic language
There were two significant types of transcription errors that were related to the 

presence of non-Arabic language in the original text. The first, seen in Figure 25, 

is the poor transcription of non-Arabic characters on a page that predominantly 

contains Arabic text. (Figure 25 represents a particularly poor transcription of the 

non-Arabic text; most transcriptions in such instances were much more accurate.)

The second type of error that occurred in the context of non-Arabic script was 

the inverse: that is, poor transcription of Arabic text on a page that is predominantly 

composed of a non-Arabic language (see Figure 26).

This is a known problem that can be addressed through the development of 

multi-language OCR models—a project that OpenITI is currently working on.

Poor scan quality
Poor scan/print quality—including, errant marks (see Figure 27), lack of ink (see 

Figure 28), misplaced letters/punctuation (Figure 13)—is not a particularly 

 2 Full view of our OCR post-correction interface is shown in figures 24–26 in order to show the broader 

page context from which the highlighted lines are drawn and displayed in a line pair (image of line 

and its digital transcription) in the pop-up. Specifically, please note that in figure 24 this line is drawn 

from a larger table and in figures 25–26 this line is drawn from a page with significant admixture of 

both Arabic and Persian in the text.

Figure 25: Example of particularly poor transcription of non-Arabic language in a 
page of primarily Arabic text.
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Figure 26: Page with substantial Non-Arabic language interferes with Arabic OCR.

Figure 27: Example of poor scan quality—black shading in background of letters.

Figure 28: Example of poor scan quality—missing print in letter.
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common source of errors in the al-Abhath data, but there is a critical mass of errors 

caused by this problem.

This problem cannot be addressed in the OCR process. OCR accuracy is (obviously) 

limited by the quality of the original scans.

Line segmentation
One final error type that should be mentioned is line segmentation errors (see 

Figures 29–31).

This type of error was not commonly found in the OpenITI manual accuracy 

assessment (Figures 29–30 were errors identified in the outside contractor’s review 

of the OCR output), but there were a few cases in which the line segmenter missed 

a section or a word of a line. Typically this would occur in atypical text presentation 

formats, such as the table seen in Figure 31.

Figure 30: Large header segmented as one line (from outside contractor accuracy 
review).

Figure 29: Missed line segments (from outside contractor accuracy review).
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Truncation of Arabic text lines is a known problem for the Latin-script-

optimized line segmenter in the version of Kraken that was used for this study. The 

implementation of a novel trainable layout analysis method has largely solved this 

issue (Kiessling et al. 2019).

Recommendations and future avenues of development for 
open source Arabic-script OCR
The results of this study indicate that work in the following three areas could generate 

significant improvements for open source Arabic-script OCR:

1. Systematic training data production. Instead of generating training 

data in a completely randomized (or haphazard) manner (as is often done), 

future Arabic-script OCR projects need to study the particularities of the 

documents they plan to OCR and make sure that the pages selected for 

training data production contain a sufficient number of the less common 

ligatures, headers, vocalization marks, footnote texts, numbers, and oth-

er particularities of the works to be OCR’d. We followed this randomized 

training data generation approach in the past (Kiessling et al. 2017). (See 

Springmann et al. 2018 for an example of a dataset resulting from hap-

hazard convenience sampling, i.e. harvesting data from sources on which 

existing methods already produce near-perfect results.) This more system-

atic approach to training data production will require more time upfront. 

But the models produced in this manner could potentially achieve much 

higher baseline accuracy and reduce the burden of postcorrection.

2. Generalized models. One of the most exciting results from this study 

was the significant improvements in accuracy achieved with the general-

ized Arabic model. The success of this approach tentatively suggests that 

if we continue to add training data sets to this generalized model we can  

Figure 31: Line segmenter missed final word in the line.



Kiessling et al: Advances and Limitations in Open Source 
Arabic-Script OCR

Art. 8, page 27 of 30

anticipate achieveing higher levels of accuracy on both typefaces on which 

we have already trained models and new typefaces for which we have no 

training data yet. If this pattern holds true in future studies, we would be 

able to gradually reduce the time and resources necessary to achieve high 

level accuracy (>97%) on new typefaces in the future. However, more re-

search on generalized models is needed as both the optimal training data 

selection, including artificial data produced by methods such as (Milo and 

Gonzalez, 2019), for such models and the actual variance on an open text 

corpus is currently unknown.

3. There are a range of technical improvements—e.g., multi-language models, 

improved line segmentation and layout analysis—that could significantly 

improve OCR accuracy numbers. Efforts are currently underway in both 

the eScripta project (of which Kiessling is a team member) and OpenITI’s 

Arabic-script OCR Catalyst Project (OpenITI AOCP) to address each of these 

technical issues.
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