
The Computational Fallacy: A New Model for
Understanding the Role of Computers in Humanities
Mohammad Ibrahim Aljayyousi, Philadelphia University, JO, mohammad.aljayyousi@gmail.com

The paper tries to counter some misassumptions about the computer and computation especially in
relation to humanities and human behavior and they amount to what the author calls “the computational
fallacy. The paper discusses a number of points such as the physiology of the computer, the Etymology
of basic terms in the field, and the current approaches especially in mainstream digital humanities which
reduce computation to a set of “tools”. The paper then proceeds to discuss some counter arguments
such as rethinking the notion of programmability which should substitute “calculation” as the core of
computation, considering the transformative nature of the computer and its media using the ideas
of some theorists like Manovich and Drucker, and some new approaches that view computation
differently like Computational Thinking, Algorithmic criticism, and Speculative computing.

Cet article essaie de contrer quelques suppositions erronées sur l’ordinateur et la computation, plus
particulièrement leur relation aux sciences humaines et au comportement humain qui équivaut à ce
que l’auteur appelle « the computational fallacy » ou l’erreur computationnelle. Cet article aborde de
nombreux points, tels que la physiologie de l’ordinateur, l’étymologie de termes de base dans ce domaine,
ainsi que les approches courantes, particulièrement les approches dominantes dans les humanités
numériques qui réduisent la computation comme un ensemble « d’outils ». Ensuite, l’article poursuit
en discutant les contre-arguments comme les nouvelles réflexions des notions de programmation
qui devraient substituer le calcul au cœur de la computation, considérant la nature transformante
de l’ordinateur et ses médias utilisant les idées de quelques théoristes dont Manovich et Drucker,
et quelques nouvelles approches qui voient la computation différemment comme « Computational
Thinking » ou la pensée computationnelle, « Algorithmic criticism » ou la critique algorithmique et «
Speculative computing » ou la computation spéculative.

Digital Studies/Le champ numérique is a peer-reviewed open access journal published by the Open Library of Humanities.
© 2022 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS

Aljayyousi, Mohammad Ibrahim. 2022. “The Computational
Fallacy: A New Model for Understanding the Role of
Computers in Humanities.” Digital Studies/Le champ numérique
12(1):15, pp. 1–19. DOI: https://doi.org/10.16995/dscn.8105

mailto:mohammad.aljayyousi@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.16995/dscn.8105

2

1.1 Background and definition of the problem
Despite the consensus about a digital revolution underway, there is a group of established
misconceptions about computing and the computer which constitute what I would like
to call “the computational fallacy.” This fallacy downplays the radical nature of the
digital revolution and re-establishes the computer as just another tool or machine. It
also means the literal understanding of computation. Ironically, the basic claims are
hard to deny because they are based on facts, such as the genesis and the physics of the
computer. But stopping here creates a partial view that brackets off other significant
facts, like the roles and diverse functions that the computer performs in real life. Such
a view is also blind to the many ways the computer is able to transform, or even evolve,
into a spectrum of things when it is put to use, almost all the time in an interactive
environment with humans. The computer is a machine, but a full stop does not follow.
In fact, the computer started with one of the most ambitious and challenging projects
of science, a “thinking machine.” This was the vision of Alan Turing (1950), the
founder of computer science. The computer is not exactly like a calculator, a TV, or even
a data processor in the general sense, even though it efficiently does some functions
associated with these machineries.

Perhaps the physiology of the computer is so imposing and self-evident. The
typical image of a pc or laptop with a screen, keyboard, and a mouse leaves no room
for imagination. Moreover, the ability of the computer to embed old media makes it
easy for it to pass as an advanced multimedia machine, or a super-TV. This “façade”
entangles the computer in the machine corporeality. The computer screen, for example,
is bequeathed from earlier technology; the cinema and the TV are the closest relatives.
However, it does not exactly work in the same way as a display tool designed for a
passive viewer. Because the computer depends on continuous input from the user, its
screen serves as a channel of output and input, and an interface between the user and
the machine. Besides, the content that the screen “displays” or visualizes is much more
diverse; we see all types of media, and there are also other types of content peculiar to
the computer and its mechanism of work. When a programmer sits at the screen, he or
she is actually “seeing into the mind” of the computer. The screen is also a platform of
work for the user. We create and make things happen on the screen.

We agree that the computer, unlike other machines, performs a special set of
functions that are easily aligned with human thinking processes, hence the qualification
as an intelligent machine. The computer does this in interaction with a human user,
and with “nontrivial” effort on the user’s part most of the time. This should sound
simple and straightforward. However, because of the workings of the computational
fallacy, this interactive dynamic is usually marginalized, and we tend to think of the

3

computer as working independently. The role of the computer’s user goes beyond
turning on and off the machine or providing input, and this role is further “amplified”
by a larger set of input devices like keyboard, mouse, etc. The interactivity of the user,
and we are talking about the ordinary user here, is consistent and continuous. Besides,
there is another set of specialized or expert users, like programmers and designers,
whose interaction is tantamount to a form of communication with the computer. The
outreaching significance of this aspect called for a whole new field of research, which is
Human-Computer Interaction, HCI.

The tendency to envision the computer as working independently is related to
a desire in the relation between man and machine, emphasized by the industrial
revolution, to seek automation at all costs. What this means is that the purpose of any
machine is the total removal of human effort. This objective is usually centralized and
used as a standard for the machine’s performance. This view is obviously mistaken
when it comes to computers. As the previous discussion shows, the human-computer
interactivity is an integral part of the machine’s functioning, and the need for human
effort is not simply a disadvantage in this particular case. Moreover, it is not difficult
to argue that removing human effort is ridiculous when it comes at the expense of
performance quality, and even if we use the same standard, we can see that regarding
many operations done on the computer, human effort is radically transformed in nature
and tremendously minimized in amount.

The computational fallacy does not necessarily exist as a unified theory or approach.
Rather, it is evident as a set of assumptions and underlying beliefs that form part of the
public imagination and are also implicit in many theories and critical paradigms. By
suggesting a unified term for this phenomenon, I intend to give a systematic articulation
of its origins and claims, which precedes my attempt at refuting those claims.

1.2 Etymology
Let us look at the origins of this fallacy. Some etymological and historical notes would
help here. The Merriam-Webster dictionary (2021) provides the following meanings
for the entry “compute”: “to determine especially by mathematical means,” “to make
calculation,” and to “reckon.” All of these meanings were also part of the original Latin
word “computare” from which “compute” is derived. The absence of any semantic
distance between the word and its origin is in itself significant. It seems that computing
is a static notion that defies the passage of time, or more accurately, it is a concept that
belongs to the basic science, the protoscience, which is mathematics. Mathematical
calculation is the core meaning of computing, and even the one sense that seems to
depart a little, “reckon,” refers to reckoning that comes as a result of calculation,

4

again by mathematical means. The etymological line is unbroken, and the semantic
boundaries are so rigid. On the cultural and epistemological level, this shows the
hegemony of mathesis and its cultural authority with all the connotations of accuracy,
systematicity, empiricism, and disambiguation, a topic that we will be returning to.
Suffice it to point for the time being that the computational fallacy seems to originate
here.

1.3 Programmability: The ignored breakthrough
A look at the early history of computing tells us that the computer evolved from
automatic calculators. Automatic calculation is still central to modern digital computers,
which remain fundamentally sophisticated calculators. However, besides automatic
calculation, there was another technology that led to the birth of computing as we
know it now and, in fact, made all the difference. It is by virtue of this technology that
the computer has its cultural authority in contemporary life. This was the technology of
programmability. Interestingly enough, this magnificent technology did not rest upon
or come as a result of any material innovation beyond automatic calculation itself. It was
simply a smart manipulation of the very method and process of automatic calculation
that had then been enhanced by powerful “computers.” Programmability is so simple
yet so creative. The machine starts to “behave” in a desired way. Programmability is
basically the process of making the computer able to receive instructions, basically
by an orchestration of automatic calculations. In doing so, programmability “links
automated processing to the symbolic realm” and adds “an extra level of articulation
in coding symbolic values onto binary entities that could be processed electronically,”
as Johanna Drucker says, and this “made the leap from automated calculation to
computation possible” (Drucker 2009, 23). Therefore, computation as we know it
today is synonymous with programmability, which was indeed a great leap not only
towards enormous improvement of functionality, but also towards a transformation of
automatic calculation itself and its uses.

Of course, programmability in its basic sense was not new. Machines were programmed
to operate in a certain way long before computers using mechanical methods most of the
time and in a restricted way. By contrast, computational programmability is integrated
within the mechanism of automatic calculators, so its uses are never exhausted.
Programmability upgraded computation to real communication with the machine. It
has its own languages and language-like method, which is code. In fact, programming
languages are correctly called so. Not only are they syntax-based sign systems but,
more importantly, they serve as effective communication tools, and even augmented
tools compared to natural languages, if we consider “the multiple addressees … which

5

include intelligent machines as well as humans” (Hayles 2005, 15). This multiplicity of
addresses is why code is code. It works on at least two levels of interpretation linking
human and machine epistemologies. The computer code translates between the human
and the machine.

Programming and code are central to the present topic as they help illustrate
the confusion about computing that the computational fallacy reflects. With
programmability, automatic calculation is transformed and moved to a different
epistemological plane, that of instructions and behaviour. The process of calculation
is not the end in itself but just a means. This bridges the gap between human
intentionality and machine automation. The great and complex leap entailed here
implicated the machine and its user, the human, in a new dynamic of interaction and
marked a new phase for the machine. The machine would once and for all transcend its
forefathers and be connected forever to humans in a complex network of functionality
that was soon to invade all aspects of life. The cultural authority of code started here,
by virtue of this leap. One way of coming to terms with the computational fallacy is
to see it as the blindness to the epistemological nature of the transformation that
programmability introduced to computing. The computational fallacy is also blinded by
the fundamentality of automatic calculation that remains central to the whole process.
In short, the computational fallacy blurs the line between automatic calculation and
programmability, insisting that the latter has not provided any major break with the
earlier.

1.4 New media and the transformative nature of the computer
 Through programmability and another feature we are going to talk about, emergence,
the computer has achieved universality, perhaps not in the sense that is meant by
Turing (1950), but in the sense of the computer’s ability to embed other machines and
media, which explains its ubiquitousness. Digitization is a process that reflects this
ability of the computer. When the computer “mediates” the material processed on it,
there is a metamorphosis underlying this process. This is why computer mediation
popped up naturally as an established concept in the discourse about computation. As a
result of digitization and computer mediation, we have a totally new category of media,
called new media. New media is a case in point. In his The Language of New Media, Lev
Manovich specifies five principles of new media which are supposed to account for the
newness of this media (Manovich 2001).

Manovich mentions the following principles: numerical representation, which
refers to the fact that “a new media object can be described formally (mathematically)
and “is subject to algorithmic manipulation” (Manovich 2001, 27); modularity, which

6

means that new media objects are “represented as collections of discrete samples”
(Manovich 2001, 30); automation; variability; and transcoding. Manovich explains the
last principle by the following note:

[T]he logic of a computer can be expected to significantly influence the traditional

cultural logic of media, that is, we may expect that the computer layer will affect the

cultural layer. (Manovich 2001, 30)

These principles overlap with the work of other theorists who also provide similar
principles of computational media, not necessarily in the general sense used by
Manovich. Some concentrated on new forms of textuality mediated by the computer.
Katherine N. Hayles, for example, talks about four characteristics of digital or
computer-mediated text. The first two characteristics she provides are layeredness
and multimodality (combining text, image, and sound together). Hayles (2008) adds
that storage in computer-mediated text is separate from performance unlike print
books for example where the same artifact functions as both storage and performance
mediums. The last characteristic she mentions is that digital text manifests fractured
temporality (Hayles 2008, 164–165). It is not hard to see that both Hayles and Manovich
are describing computer mediation as such.

The computer is never a passive or “harmless” medium for transmission. The
five principles and the four characteristics describe some direct consequences
of computer mediation, which indeed amount to a separate “logic” or layer, in
Manovich’s terms, that affects everything else. Taken together, these principles
indicate the emergent working of the computer, and this is something that Manovich
does not fail to notice:

[B]eginning with the basic, “material” principles of new media—numeric coding

and modular organization—we moved to more “deep” and far-reaching ones—

automation and variability. (Manovich 2001, 45)

Thus, we can talk about two separate manifestations of computation, divided by an
epistemological line. We have the basic ones, the mathematical or material, on the one
hand, and the emergent, deep ones on the other. Depth is perhaps not the best choice
of words, but the notion is complicated enough. I prefer emergence because this is the
notion that can explain the relation between these two sets of principles/levels. The
different levels are “genetically” related while at the same time they are distinct. The
line dividing the two shows an epistemological leap as a one-to-one correspondence

7

is obviously lacking. Again here, we say that dwelling on the basic level points to the
computational fallacy, which is blind to the implications of the epistemological leap.
Transcoding is perhaps the principle that is supposed to summarize the overall imprint
of the computer:

[I]n short, what can be called the computer’s ontology, epistemology, and prag-

matics—influence the cultural layer of new media, its organization, its emerging

genres, its contents. (Manovich 2001, 46)

What needs to be stressed, regardless of the controversy about the reaching of the
influence designated here, is that computer mediation has strong ontological and
epistemological implications. The computational fallacy is the denial of this fact or the
failure to recognize it.

But recognizing, and then acknowledging, this transforming influence of the
computer is not without difficulty because of the way computer mediation itself works.
Perhaps a parallel question to the one about the newness of new media is why it is
media, or what is in it that makes it retain the status of media. Computer-mediated
media is media by another name; thus, we talk about digital film, digital photography,
digital poetry, etc. This is because the computer and other mediums “intermediate” or
“remediate” each other, as Katherine N. Hayles and David Bolter and Richard Grusin
call this respectively. This indicates “complex transactions” between different forms of
media (Hayles 2005, 7), and as Bolter and Grusin put it, it “involves both homage and
rivalry, for the new medium imitates some features of the older medium, but also makes
an implicit or explicit claim to improve on the older one” (Bolter and Grusin 2000, 23).
We have seen how the computer “improves” on the material processed on it, but it is
equally important to see how it “imitates” that same material, allowing it to retain
its original medial categorization. The computer can simulate; it creates a simulacral
“façade” and a surrogate physicality of/for the original media. I call it a façade because it
reveals just the tip of the iceberg and hides all the inner workings. We tend to be blinded
by this due to assumptions about materiality, representation, and originality.

In this way, the computer appears to act so smartly. It meets the requirements of the
dominant culture in terms of mimesis and reproduction while hiding its transformations
away from the skeptical eye of that culture. Or we can say it makes a trade-off. Without
drifting into sci-fi scenarios, it is in this sense that the machine is actually taking over.
Those of us who insist that the computer is just a medium for transmission abiding
by whatever rules we assign are in fact fooled. This is one form of the computational
fallacy, the insistence that the machine is just reproducing old media for us.

8

1.5 Emergence
Another aspect of computation and the computer that is worth noticing is its emergent
way of working. The idea of emergence is not new, and it has its philosophical and
scientific applications. We can talk about emergence when things can be understood
as multi-level complex systems where relatively simple patterns lead to emergent
more complex ones. O’Connor provides the following definition and short history of
the term:

Emergence is a notorious philosophical term of art. A variety of theorists have

appropriated it for their purposes ever since George Henry Lewes gave it a philo-

sophical sense in his 1875 Problems of Life and Mind. We might roughly characterize

the shared meaning thus: emergent entities (properties or substances) “arise” out

of more fundamental entities and yet are “novel” or “irreducible” with respect to

them. (O’Connor 2020)

In short, emergence is the transformation from fundamental to novel where the novel
is irreducible or, for that matter, untraceable in any obvious way to its fundamental
origins. This point is significant to our argument about the computational fallacy
since this fallacy simply occurs when this emergent nature of the computer or the link
between the fundamental level, which is computation, and the many emergent levels is
not recognized or acknowledged.

Emergence and computation are so tightly related that they become synonymous
terms in the work of emergence theorists. Some of these, as Hayles (2005) points out,
universalize the computational–emergent paradigm:

Recently, however, strong claims have been made for digital algorithms as the lan-

guage of nature itself. If, as Stephen Wolfram, Edward Fredkin, and Harold Morowitz

maintain, the universe is fundamentally computational, code is elevated to the lin-

gua franca not only of computers but all physical nature. (Hayles 2005, 15)

They also understand the universe “as software running on the ‘Universal Computer’
we call reality” (Hayles 2005, 27). The computational fallacy ignores the overreaching
implications of this emergent mechanism of the computer and focuses on the basic level
that is “irreducibly” mathematical. The emergence in the computer also means that
its uses are hardly exhaustive, and remain open for new, never previously imagined,
manipulations.

9

Computation starts with “computation” but ends up with numberless “emergent”
patterns, some of which are not computational in any obvious sense. The computer
works on different levels of complexity. On one level, we have machine language or
code, and this is the “brute” pattern of “naked” digitality, or bits (ones and zeroes). All
computational operations are physically carried out at this level. Many complex levels
are based on this basic one and might be said to actually emerge out of it—for example,
the level on which programmers work with higher codes like C++ or Java, or the GUI
level through which ordinary users interact with the computer. The computational
level, in its mathematical rendering, serves as a basic level on which more complex,
more advanced levels and functions “emerge.”

Let us take an illustrative example from a common feature, the digital photo. As
represented and therefore shown on the screen of the computer, a digital photo
is perceived as a flower. However, if we enlarge any bit of it, we can see a pixelated
section consisting of coloured pixels. All of us, the experts and the novice, know that
a pixel is a tiny square on the screen. This is the upper layer (the novel) of the digital
space. As stored in the computer’s memory, the digital photo and the rather complex
arrangement of the colour pixels are only digits. Those digits are the fundamental layer
on which the photo, as complex as it seems, is based. Another less obvious example is
the interface of the operating system like Windows. The user-friendly and interactive
interface that revolutionized computing is “the façade” of deeper layers. We as users
interact with Windows and perform simple tasks like opening a program, giving a print
order, editing a photo, etc. All this happens on the visualized level, that of the user
interface. The operating system is programmed or written in a language more complex
that the one the user interacts with, usually visual C or C++, which itself is based on
the assembly language, which, in turn, is based on the digital duality of zero/one or
electricity/no electricity. Those levels of code or “language” are based on an emergent
hierarchy; each level builds a higher one that gives sophisticated results.

Finn in What Do Algorithms Want? refers indirectly to emergence as it pertains to
computation in the following remark:

By assembling systems that follow a few simple computational laws, we can iter-

ate toward highly sophisticated solutions to difficult problems that resist more

straightforward (e.g., human-designed) algorithmic approaches. (Finn 2017, 183)

The “simple” computational processes can allow more sophisticated ones to emerge,
and this emergence is not final in its form; it is open to more sophistication.

10

1.6 The discursive presence of the computational fallacy and sample endeavours
to counter it
Let us move into more specialization and see how the computational fallacy manifests
itself in the humanities discourse. Some of the previous claims are easy to pop up when
computation or the computer is in communication with an alien, or supposedly so,
register like the humanities. A central issue here is the seemingly enduring disparity,
disjunction, or incompatibility between the literary enterprise and the computational
method. Computation is quantitative, digital, rule-governed, mathematical,
accumulative, data-driven, algorithmic, in short, scientific, while literary study is
qualitative, analogue, subjective, interpretative, intuitive, serendipitous, in short,
humanistic. We are faced with a classical dichotomy. The disparity here, which is
between two separate domains, is not a problem in itself. After all, human knowledge is
compartmentalized into fields that, by definition, do not share common epistemological
grounds. But with the increasing “fault lines” between the two fields or registers,
basically with the advent of digital technology, we are forced to rework and refocus
this dichotomy. We find ourselves in search for a compromise for what has become a de
facto “clash” between our two major epistemological tools:

Much of the intellectual charge of digital humanities has come from the confront-

ation between the seemingly ambiguous nature of imaginative artifacts and the

requirements for formal dis-ambiguation essential for data structures and schema.

(Drucker and Nowviskie 2004)

This confrontation is a multi-faceted one, and it has raised a set of epistemological
questions.

It is logical to assume that the very idea behind digital literary studies and digital
humanities in general entails a contention with and a rejection of the computational
fallacy. Ironically, this is not the case, and the working of this fallacy is evident and
represents a major drawback in the field as I am going to show. The main issue remains
the fundamental disjunction between computation and literary studies, which is
the central claim of this fallacy. This issue is already centralized, and we can easily
consider all scholarship in digital humanities and its offshoot, digital literary studies,
as contentions with this basic question. The answers, however, are still guided and
parameterized by the computational fallacy.

1.6.1 Algorithmic Criticism
Stephen Ramsay’s “Algorithmic Criticism” includes an insightful analysis in this regard.
In an attempt to rethink the conditions for re-integrating the algorithmic manipulation

11

of literary texts into literary studies, Ramsay (2013) points to a number of key factors.
The bottom line is that computing and its corresponding digital revolution have not
“penetrated the core activity of literary studies which … remains mostly concerned
with the interpretive analysis of written cultural artifacts” (Ramsay 2013). The implicit
assumption here is that any possible “penetration” by computation means a radical
change of that core activity, which is inherently resistant to computation. The problem
is that the available computational tools are still behind in terms of appropriating this
core activity, which is irreducibly subjective and is based on a different hermeneutical
model or rubric in which “the accumulation of verified, falsifiable facts” is the basis of
interpretation (Ramsay 2013). We lack the “tools that can adjudicate the hermeneutical
parameters of human reading experiences—tools that can tell you whether an
interpretation is permissible,” and they still “stretch considerably beyond the most
ambitious fantasies of artificial intelligence” (Ramsay 2013). The subtext of this
description, which is an accurate and faithful one as long as the original assumptions
it starts from are concerned, is the fundamental disjunction between the two parties,
computing and criticism, and this creates a perfect stalemate.

Ramsay (2013) finds a way out of this stalemate in the context of algorithmic
criticism. Although the transformation allowed by the algorithmic manipulation of
literary texts cannot be intractably linked to the type of interpretive conclusions that
we seek in literary studies, he affirms, it “can provide the alternative visions that give
rise to such readings” (Ramsay 2013). We can still use textual analysis because any
interpretation involves a radical transformation of texts; therefore, “the narrowing
constraints of computational logic—the irreducible tendency of the computer toward
enumeration, measurement, and verification—are fully compatible with the goals of
criticism” (Ramsay 2013).

However, a different conclusion is possible if that bottom line is rethought. Let us
agree that the facts about criticism are hard to question, and they are backed by established
disciplinary and epistemological boundaries. Besides, as Ramsay (2013) points out,
any radical change in criticism and its core activity would make it cease to be criticism.
The scene is so different regarding the other party, computing and the computer. The
disciplinary boundaries, if any, are less rigid, and the epistemological and theoretical
parameters governing the field are still open to discussion. I suggest a new understanding
outside the constraints of the computational fallacy and its givens about the computer. A
different kind of conclusion than the one reached by Ramsay becomes inevitable.

1.6.2 Speculative computing
Another case in point comes from the work of Johanna Drucker and her Speculative
Computing, the approach that she theorizes in SpecLab: Digital Aesthetics and Projects

12

in Speculative Computing. Speculative Computing, whose abbreviation SC reverses that
of CS (computer science)—not a totally insignificant thing, especially as speculation
replaces science—is a pertinent example for many reasons; it is a fully fledged theory
and a self-conscious attempt at an alternative approach in digital humanities, one
that presents a humanistic appropriation of computing, in addition to the fact that it
links theory and practice (SpecLab projects). The starting point of this approach is “a
serious critique of the mechanistic, entity-driven approach to knowledge that is based
on a distinction between subject and object” (Drucker 2009, 21). The name given to this
alternative theory is aesthesis, which is “a theory of partial, situated, and subjective
knowledge” (Drucker 2009, xiii). Aesthesis is meant to contrast with and counter
mathesis, which represents the mechanistic approach with all the implications of this.

Another starting premise of SC is a self-conscious awareness of the computation/
humanities epistemological friction:

The humanistic impulse which “has been strong in its dialogue with “informatics”

and “computing” but has largely conformed to the agenda-setting requirements set

by computational environments. Our goal at SpecLab, by contrast, has been to push

against the logical constraints imposed by digital media. (Drucker 2009, 22)

These “agenda-setting” requirements are logical systematicity, formal logic, and
disambiguation, as Drucker points out at different places, and are all patently counter-
humanistic. The use of the generalist term “computational environments” is also
significant, and I will return to this later. SC also presents an alternative mechanism of
work within these environments:

We used the computer to create aesthetic provocations—visual, verbal, textual

results that were surprising and unpredictable. Most importantly, we inscribed

subjectivity, the basis of any interpretive and expressive representation into digital

environments by designing projects that showed inflection, the marked specificity

of individual voice and expression, and point of view as a place within a system.

(Drucker 2009, 19)

We see how theory and practice are entwined. In fact, they are inseparable. The
theoretical agenda of inscribing the humanistic is translated into design projects
in SpecLab. This means specific decisions on the techno-practical level. Let us
take two examples of such decisions from one SpecLab project, which is Temporal
Modelling:

13

[O]n a technical level, the challenge is to change the sequence of events through

which the process of “dis-ambiguation” occurs. Interpretation of subjective activ-

ity can be formalized concurrent with its production—at least, that is the design

principle we have used as the basis of Temporal Modelling. (Drucker and Nowviskie

2004)

Changing the sequence of events means shifting the epistemological prioritization,
or as put by Bethany Nowviskie, Drucker’s collaborator: “the subjective, intuitive
interpretation is captured and then formalized into a structured data scheme, rather
than the other way around” (Drucker and Nowviskie 2004). The importance of this
example, besides specificity, is that we have an idea about how SC works; the rules of
the game are changed within the computational environment. In doing so, SC realizes
its premise in contrast to dominant practices in DH:

The digital humanities community has been concerned with the creation of digital

tools in humanities context. The emphasis in speculative computing is instead the

production of humanities tools in digital contexts. (Drucker 2009, 25)

Projects in SC are not just technical experiments but have “ideological as well as
epistemological” aims. Ideologically, the ultimate aim, as declared by Drucker
(2009), is “to push back on the cultural authority by which computational methods
instrumentalize their effects across many disciplines.” The target, especially in relation
to computing, is further clarified:

The villain, if such a simplistic character must be brought on stage, is not formal

logic or computational protocols, but the way the terms of such operations about

administration and management of cultural and imaginative life based on the pre-

sumption of objectivity. (Drucker 2009, 5)

This clarification is never redundant and very crucial. The problem is in the
administration, which “locks computing into engineering problem-solving logical
sensibility” (Drucker and Nowviskie 2004). The relation between logical systematicity
and computing is rethought and the assumed synonymity is broken; this really amounts
to a revelation. Computing had been exclusively used for logical ends, but this was due
to the lack of alternative approaches:

We know, of course, that the logic of computing methods does not in any way pre-

clude their being used for illogical ends—or for the processing of information that

14

is unsystematic, silly, trivial, or in any other way outside the bounds of logical func-

tion. (Drucker and Nowviskie 2004)

SC and its corresponding SpecLab projects have thus provided a positive answer to most
of the questions that they set out to address:

Can speculation engage these formalized models of human imagination at the level

of computational processing? … What might those outcomes look like and suggest

to the humanities scholar engaged with the use of digital tools? Does the com-

puter have the capacity to generate a provocative aesthetic artifact? (Drucker and

Nowviskie 2004)

The computer definitely has a generative aesthetic capacity, not because this is an
inherent capacity in it, but rather, because the computer’s main capacity is in being
adaptable and susceptible to different uses. The question is to have a framework and a
technical blueprint; this is what the theorists of SC have done.

SC is a lesson that we need to learn. The computational fallacy is the insistence to lag
in the theoretical and ideological atmosphere that SC has rendered incongruous. It is
the insistence that the villain is computing itself, independent of the approach in which
it is appropriated. The computational fallacy is using an instrumentalist approach
while maintaining that the computer is an irreducible instrument. Computing provides
an environment; this is why I noted the use of this term. The word “environment” is a
good choice as it indicates that computing provides surrounding conditions rather than
imposes any specific course of events.

1.6.3 Experimental Humanities and Machine Learning
Ed Finn in What Do Algorithms Want? introduces the term “Experimental Humanities”
as a redefinition of roles between humanities and computation, represented in the
algorithm:

We can choose to construe the figure of the algorithm as a god to be worshipped …

or we can choose to see a new player, collaborator, and interlocutor in our cultural

games. This is what I would like to call “experimental humanities.” (Finn 2017,

192)

The algorithm, as Finn shows, is not only becoming a central player in the cultural
games, but our culture now depends on a set of “culture machines” or digital tools that
take “a growing share of the critical and creative work that used to be distinctively,

15

intrinsically human” (Finn 2017, 181). They “collaborate” with us on activities and
domains that we had long thought were exclusive to human intelligence.

Finn’s proposition is a powerful one and it has affinities with my attempt in
this article to counter what I have called the “computational fallacy.” Experimental
criticism with its acknowledgment of the more powerful role that algorithms and
computation have in our cultural production, and not to approach them merely as
mediums of transmission. Qualifying this field as experimental is also important since
the prospects are never predefined or delimited. All are open to new possibilities. The
computational fallacy is the attempt to counter this trend.

Machine learning, especially as it pertains to creativity, is valid for our current
discussion. The field is advancing and shifting in approaches and paradigms so rapidly
that a year seems like a century compared to other disciplines. Some studies worth
mentioning are Tegmark (2017); Miller (2019); and Foster (2019). Engaging with
the most recent theories or applications in detail is beyond the scope of this article.
However, another supporting log to the claims which have been proposed against the
computational fallacy can be found in this field. A major one is the need to continuously
redefine and therefore demarcate the epistemological boundaries of fields and
disciplines and their core concepts. Miller (2019) and Tegmark (2017), for example,
start and also end with redefinitions of well-established concepts such as intelligence,
creativity, consciousness, and, for that matter, humanness. The counter-fallacy
evidence we can take from this is that what is computational and what is humanistic
are hard to establish. It is even counterproductive to try to set rigid boundaries between
the two fields and see them as intrinsically incompatible or even compatible. Machine
learning has shown us that they are becoming hybrid.

1.7 Conclusive remarks
There is a question that might easily go unasked. Why is it computing and
computational environments that are in question here? The larger ideological
framework for SC, which is aesthesis, is a critique of the instrumental logic in
western culture and not exclusive to digital humanities or practices generally
related to computing. It is either that computation, especially in humanities context,
provides an extreme case of the working of the instrumental logic, or it serves as a
perfect environment for countering that logic and “demonstrating” the alternative
approach: it allows the entanglement of theory and practice, for example. If we
disagree about the earlier, we can easily agree on the later, and supportive examples
from SC itself abound. Perhaps it is useful to conclude here with a reminder from
Drucker herself:

16

No task of information management is without its theoretical subtext, just as no

act of instrumental application is without its ideological aspects. We know that the

“technical” tasks we perform are themselves acts of interpretation. (Drucker and

Nowviskie 2004)

So, we can in no way continue investing the computer with the vices of logical
systematicity, declaring it forever disjunct with humanities. The dominant trends
in computing cannot be separated from their theoretical and ideological subtext.
Moreover, and more importantly, any change in the subtext will result in a radical
change in the nature of information management, which means, among many other
things, that there is a great potential in terms of alternative approaches, in the manner
of SC.

If we start from a different view of computation, one that is free of the computational
fallacy, a whole set of new conclusions will be available. Computation’s disjunction
with literary studies is not a given. A different view means reworking this disjunction,
leading to new terms of engagement between the two fields. A number of key issues will
need to be revisited. Computation is not only a set of tools or methods, not to mention
an irreducible set. Similarly, the claim that the only available role for computation in
criticism is textual analysis is acting like a wall or a red line. All these assumptions lead
to the tendency to frame the problem in terms of technical limitations and maintain
the premise that the problem is that CS and AI are still behind regarding human-like
abilities. The claim to technical limitations historicizes the disjunctive moment and
implies that current uses are the best available ones. Another outcome of this type
of thinking is that the issue remains within the science/humanities dichotomy, with
computation as a scientific (and scientifying) method, and digital literary studies easily
becomes another attempt at scientifying the humanities.

But the question “What does it mean to think outside the computational fallacy,
especially as pertinent to literary studies?” remains pending. Answering this question
is beyond this article, in addition to the fact that the answers depend on potential
work that marries theory and practice, much like speculative computing. However,
I can presently suggest one direction in this regard. One of the aspects of the new
understanding is envisioning the computer as a partner. Acknowledging partnership
would mean a division of labour between man and machine: who can do which better. The
computer is not supposed to work independently but in a self-consciously interactive
environment that allows both parties (human and computer) to share and exchange
information and insight. Successes and failures would thus be judged from the same
collaborative perspective. Computational artifacts and interfaces already have many

17

tools for interaction, like the pop-up message windows, by which “the machine” gets
input from the human user. Those can be built upon for a more effective and integrated
interaction.

Let us take the example of machine translation. If we look at the current software
for machine translation, we will notice the limiting influence of the automation-at-
all-costs requirement that I talked about earlier. The machine is “left alone” to do the
tasks, and the human’s role is to provide the input, usually by a simple procedure like
copy-paste. An alternative and definitely more efficient model would be a collaborative
one, which would include tools that enable the program to ask for feedback from the
user on challenging issues, usually those that cause faulty translations, and this should
be throughout the translation process.

The collaborative model allows a new understanding of the role of computation
within any humanistic practice. By virtue of this model, we are able to see that any
incompatibility is due to the assumption that the computational device is supposed
to work independently. If we start to think of it as a full partner, our whole approach
will change, and incompatibility is no longer an issue. All in all, a collaborative model
will definitely alter the epistemological underpinnings of literary studies because
the logistics of truth assignment in the field will radically change. When analysis or
interpretation is done with the participation of a machine, problems will be reformulated
not only for human reasoning or intuition but for a machine’s “intelligence,” basically
in an algorithmic manner. It is in this way that literary studies might be said to be
“scientified.” There are two interrelated sides to the CF: the literal understanding of
computation, and the understanding of computation as inherently and exclusively
“scientific.” As this article has hopefully shown, computation is an environment for
work, and it is open to all types of agendas and subtexts. This is an advantage unless we
start from an entrenched ideological position that insists on one certain appropriation
of computation.

18

Competing interests
The author has no competing interests to declare.

Editorial contributions
Recommending Editor
Gimena del Rio Riande, CONICET, Argentina

Section Editor
Iftekhar Khalid, The Journal Incubator, University of Lethbridge, Canada

Bibliography Manager
Shahina Parvin, The Journal Incubator, University of Lethbridge, Canada

Copy and Layout Editor
Christa Avram, The Journal Incubator, University of Lethbridge, Canada

References

Bolter, David, and Richard Grusin. 2000. Remediation: Understanding New Media. The Cambridge:
The MIT Press.

“Compute.” 2021. Merriam-Webster Online Dictionary. “Compute.” Accessed October 11. http://
www.merriam-webster.com/dictionary/compute.

Drucker, Johanna. 2009. SpecLab: Digital Aesthetics and Projects in Speculative Computing. Chicago:
University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226165097.003.0001

Drucker, Johanna, and Bethany Nowviskie. 2004. “Speculative Computing: Aesthetic Provocations
in Humanities Computing.” In A Companion to Digital Humanities, edited by Susan Schreibman, Ray
Siemens, and John Unsworth. Oxford: Blackwell, 2004. Accessed October 11, 2021. http://www.
digitalhumanities.org/companion/view?docId=blackwell/9781405103213/9781405103213.
xml&chunk.id=ss1-4-10.

Finn, Ed. 2017. What Do Algorithms Want? Imagination in the Age of Computing. Cambridge: The MIT
Press. DOI: https://doi.org/10.7551/mitpress/9780262035927.001.0001

Foster, David. 2019. Generative Deep Learning. Newton, MA: O’Reilly.

Hayles, Katherine N. 2005. My Mother Was a Computer: Digital Subjects and Literary Texts. Chicago:
University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226321493.001.0001

———. 2008. Electronic Literature: New Horizons for the Literary. Notre Dame: The University of
Notre Dame Press.

Manovich, Lev. 2001. The Language of New Media. Cambridge: The MIT Press.

Miller, Arthur I. 2019. The Artist in the Machine. Cambridge: The MIT Press.

O’Connor, Timothy. 2020. “Emergent Properties.” In The Stanford Encyclopedia of Philosophy, edited
by Edward N. Zalta. Accessed October 11, 2021. https://plato.stanford.edu/archives/fall2020/
entries/properties-emergent.

http://www.merriam-webster.com/dictionary/compute
http://www.merriam-webster.com/dictionary/compute
https://doi.org/10.7208/chicago/9780226165097.003.0001
http://www.digitalhumanities.org/companion/view?docId=blackwell/9781405103213/9781405103213.xml&chunk.id=ss1-4-10
http://www.digitalhumanities.org/companion/view?docId=blackwell/9781405103213/9781405103213.xml&chunk.id=ss1-4-10
http://www.digitalhumanities.org/companion/view?docId=blackwell/9781405103213/9781405103213.xml&chunk.id=ss1-4-10
https://doi.org/10.7551/mitpress/9780262035927.001.0001
https://doi.org/10.7208/chicago/9780226321493.001.0001
https://plato.stanford.edu/archives/fall2020/entries/properties-emergent
https://plato.stanford.edu/archives/fall2020/entries/properties-emergent

19

Ramsay, Stephen. 2013. “Algorithmic Criticism.” In A Companion to Digital Literary Studies, 477–491.
John Wiley & Sons, Ltd. Accessed October 11, 2021. DOI: https://doi.org/10.1002/9781405177504.
ch26

Tegmark, Max. 2017. Life 3.0: Being Human in the Age of Artificial Intelligence. New York: Knopf.

Turing, Alan. 1950. “Computing Machinery and Intelligence,” Mind, LIX (236): 433–460. Accessed
October 11, 2021. DOI: https://doi.org/10.1093/mind/LIX.236.433

https://doi.org/10.1002/9781405177504.ch26
https://doi.org/10.1002/9781405177504.ch26
https://doi.org/10.1093/mind/LIX.236.433

